# CHAPTER – 2 TRAFFIC DEMAND ANALYSIS

#### 2.1 Introduction

The following steps are involved in traffic demand analysis towards estimation of ridership on Mass Rapid Transit System:

**Preparation of Database:** Involves collection of secondary data (studies done earlier, census data, Master Plan, land use parameters etc) and primary surveys (traffic and travel surveys).

**Development of Transport Demand Models:** The process consists of development of formulae (or models), enabling forecast of travel demand.

**Estimation of Land use Parameters:** Land use parameters (viz., population, employment) are to be estimated for the horizon years in order to assess the future travel demand.

**Formulation & Evaluation of Alternative MRTS Networks:** Various alternative alignments for MRTS corridor are to be identified and passenger loading on each alternative is estimated. The alternative having better ridership and engineering feasibility is recommended for implementation.

# 2.2 Database For The Study

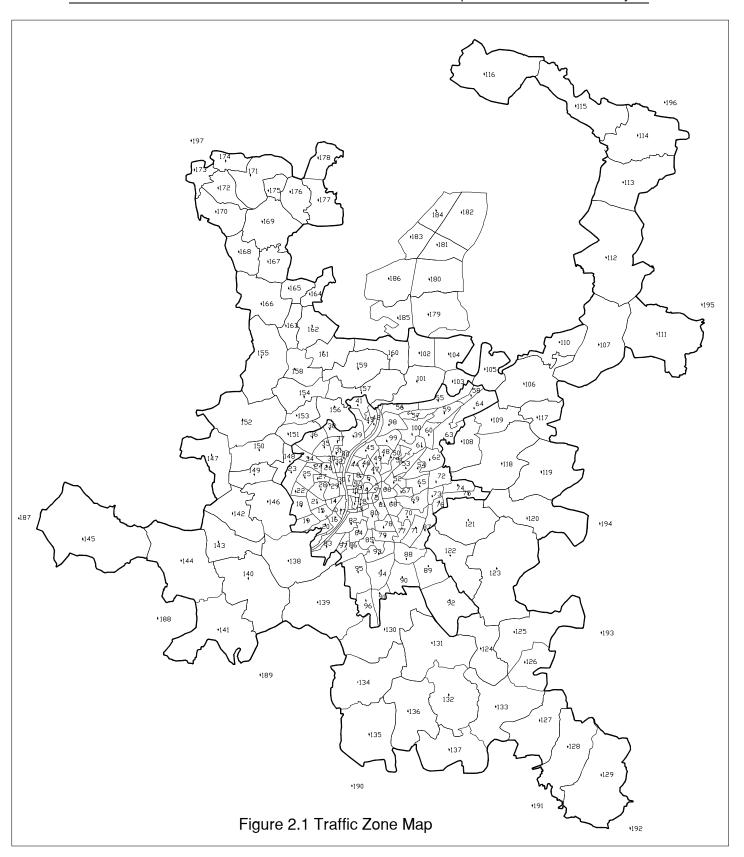
The literature available with different organizations/ planning agencies has been reviewed with an objective to understand the growth of the subareas within the Study Area along with their traffic and travel characteristics. A review of all the earlier study reports related to the Study Area was also taken up.

Census data available for various wards has been reviewed in order to carry out household travel survey. The sample size and distribution of samples over the Study Area to carry out the household travel survey is based on the zonal population and distribution of zonal households. Additional details like major activity centers in each traffic zone have been collected to assess the trip generation/attraction potential of each zone. The transport network maps of the Study Area and land-use proposals have been studied in depth to assess the scope and requirement of future transport infrastructure. All the data available with various Government departments relating to traffic and travel characteristics have been

The primary surveys include Road Network Inventory, Speed and Delay Survey, Traffic Volume Surveys, Origin and Destination Survey, Bus and

collected and compiled for use in the Study.

Shared Auto Passenger Survey, Rail Terminal Survey and Household Travel Surveys.


The traffic volume data has been compiled both in terms of vehicles and passengers. Origin-Destination (O-D) matrices for public and private transport for various trip purposes are prepared for base year and projected for various horizon years.

Planning parameters consisting of population, employment and number of resident workers for the zone system for the base year (2003) and for the horizon years (2010, 2025 & 2035) have been quantified. A road network map with all roads of 12 m and above ROW for the base year 2003 was developed and integrated with traffic zone system.

## 2.3 Traffic Zone System

The Study Area was divided into a total of 197 zones (186 internal and 11 external). The 186 internal zones consist of Ahmedabad Municipal Corporation (AMC) area, Area of Ahmedabad Development Authority (AUDA) and Gandhinagar. The zones are divided in such a way that the population is homogeneous within a zone. The zone size has been kept sufficiently small so as to have better sensitivity to the Transport Demand Model.

The traffic zone system map for the Study Area is presented as **Figure 2.1**.



# 2.4 Primary Surveys and Analysis

- 2.4.1 The following primary traffic and travel surveys have been conducted as a part of the study:
  - i) Road Network Inventory and Speed & Delay Surveys
  - ii) Traffic Volume Counts
  - iii) Public Transport Passengers' Surveys
  - iv) Household Travel Surveys

## 2.4.2 Road Network Inventory and Speed & Delay Surveys

Road network inventory has been carried out along all arterials and major roads totaling to 1042 km. Of which 41% of the road network is having 4 or more lanes of carriageway and about 48% is having 2-lane of carriageway. About 5% of the Study Area roads are provided with footpath on both sides and 15% of road length has footpath on one side.

Speed and delay survey has been conducted using moving car method during peak and off-peak periods. For private vehicles, during peak period about 71% road network is having journey speed of less than or equal to 30 Kmph and for public vehicles during peak period about 95% of the road network is having journey speed of less than or equal to 30 Kmph.

The distribution of the road length by journey speed during peak and offpeak periods for private and public transport is presented in **Table 2.1**.

| Table 2.1 Distribution of Road | Length by Journey Speed |
|--------------------------------|-------------------------|
|--------------------------------|-------------------------|

|          | Journey | Private V | /eh.                   | Public T    | pt.     |
|----------|---------|-----------|------------------------|-------------|---------|
| <b>\</b> |         | Peak      | Off-<br>Peak<br>Period | Peak Period |         |
| 1        | <= 10   | 1.92 %    | 0.89 %                 | 3.94 %      | 1.54 %  |
| 2        | 11 - 20 | 10.66 %   | 9.23 %                 | 39.46 %     | 10.94 % |
| 3        | 21 - 30 | 58.67 %   | 29.14 %                | 51.66 %     | 47.87 % |
| 4        | > 30    | 28.76 %   | 60.74 %                | 4.94 %      | 39.65 % |
|          | Total   | 100.0%    | 100.0%                 | 100.0%      | 100.0%  |

#### 2.4.3 Traffic Volume Counts

Classified traffic volume count survey has been conducted at the selected mid-block locations, Outer Cordon Location and Screen Line Locations. The survey helps in assessing the existing traffic characteristics as well as to validate the transport demand model.

Classified traffic volume counts have been taken on an average weekday for 16 hour duration to quantify the volume of traffic moving along the various road sections in the Study Area. The survey locations were selected in such a way that would cover entire Study Area and assist in understanding the traffic pattern in the Study Area.

## a) Mid-Block Traffic Counts

Mid-block traffic counts were conducted at 33 locations in the Study Area. The locations were chosen in such a way that combination of some of the mid-blocks would act as screen line also.

It was observed that traffic at different locations varies from 10511 PCUs (Thaltej Village Road) to 64045 PCUs (K.G. Road, Near Delhi Darwaja) on a normal working day. At different mid-block locations peak hour traffic varies from 8.37% S.G. Highway (Near Karnawati Club) to 10.85% (Ashraml Road. Near Fateh Pur) of the total daily traffic and A summary of traffic characteristics at mid-blocks is presented in **Table 2.2**.

Table 2.2 Summary of Traffic Characteristics at Mid-Block Locations

| Loc.<br>No. | Name of Location                         | Veh.  | PCUs  | Peak Hr.<br>Traffic<br>(PCUs) | % Peak<br>Hour<br>Share/<br>Factor |
|-------------|------------------------------------------|-------|-------|-------------------------------|------------------------------------|
| 1           | Ashram Road (Near Fateh Pur)             | 45281 | 35896 | 3893                          | 10.85                              |
| 2           | Ashram Road (Near V.S. Hospital)         | 88343 | 62760 | 6012                          | 9.58                               |
| 3           | Ashram Road (Near Sanyash<br>Ashram)     | 57528 | 42391 | 3680                          | 8.68                               |
| 4           | Ashram Road (Near Usman Pura)            | 41048 | 31990 | 3268                          | 10.22                              |
| 5           | Naya Wadaj Road                          | 40972 | 28357 | 2661                          | 9.38                               |
| 6           | R.T.O Office (Near Subhash Circle)       | 77999 | 55322 | 5561                          | 10.05                              |
| 7           | Relief Road (Near Rewadi Bazar)          | 61380 | 40167 | 4006                          | 9.97                               |
| 8           | Relief Road (Near Rupam Cinema)          | 39923 | 26713 | 2710                          | 10.14                              |
| 9           | Relieaf Road (Near Relief Cinema)        | 67097 | 41750 | 4334                          | 10.38                              |
| 10          | Gandhi Road (Near State Bank of Patiala) | 18729 | 12479 | 1215                          | 9.73                               |
| 11          | Gandhi Road (Near Teen Darwaja)          | 36290 | 22928 | 1999                          | 8.72                               |
| 12          | K.G. Road (Near Daryapur<br>Darwaja)     | 78917 | 56218 | 5454                          | 9.70                               |
| 13          | K.G. Road (Near Delhi Darwaja)           | 96115 | 64045 | 5458                          | 8.52                               |
| 14          | Navrang Pura Road (Near Railway Xing)    | 41619 | 28580 | 3061                          | 10.71                              |

| Loc.<br>No. | Name of Location                                    | Veh.   | PCUs  | Peak Hr.<br>Traffic<br>(PCUs) | % Peak<br>Hour<br>Share/<br>Factor |
|-------------|-----------------------------------------------------|--------|-------|-------------------------------|------------------------------------|
| 15          | Navrang Pura Terminal                               | 20205  | 15332 | 1490                          | 9.72                               |
| 16          | Gujarat University Road (Near H.L.Commerce College) | 54268  | 35451 | 3769                          | 10.63                              |
| 17          | Manav Mandir Marg (Near Suchitra Apt)               | 52830  | 36388 | 3623                          | 9.96                               |
| 18          | Akashwani Kendra (Near Gandhi<br>Bridge)            | 100634 | 63586 | 5768                          | 9.07                               |
| 19          | Rajiv Kaka Road (Near Usman<br>Pura)                | 17693  | 13788 | 1227                          | 8.90                               |
| 20          | Mangal Das Road (Near Pinnakle Hotel)               | 63160  | 40476 | 3924                          | 9.69                               |
| 21          | Mangal Das Road (Near Parimal Society)              | 36644  | 25561 | 2295                          | 8.98                               |
| 22          | Vikram Sara Bhai Road (C.N.<br>Vidhyalaya)          | 111039 | 72117 | 7716                          | 10.70                              |
| 23          | Vikram Sarabhai Marg (Near L<br>Colony)             | 35574  | 23893 | 2215                          | 9.27                               |
| 24          | Vikram Sarabhai Marg (Near IIM)                     | 41269  | 27148 | 2925                          | 10.77                              |
| 25          | Netaji Road (Near Paldi Bus<br>Terminal)            | 47104  | 33269 | 3264                          | 9.81                               |
| 26          | C.G. Road                                           | 30742  | 20281 | 2144                          | 10.57                              |
| 27          | 120 Circular Road                                   | 25026  | 17702 | 1741                          | 9.83                               |
| 28          | 132 Ring Road (Near Jivraj Park<br>Bus Stop)        | 32046  | 25542 | 2464                          | 9.65                               |
| 29          | 132 Ring Road (Near Mem Ngr Bus Stop)               | 49607  | 31963 | 3354                          | 10.49                              |
| 30          | S.G. Highway (Near Karnawati<br>Club)               | 35352  | 47864 | 4004                          | 8.37                               |
| 31          | Bopal Road (Near ISCON Temple)                      | 23047  | 16972 | 1777                          | 10.47                              |
| 32          | Thaltej Villege Road                                | 14670  | 10511 | 1104                          | 10.50                              |
| 33          | S.G. Highway (Near New High<br>Court)               | 30500  | 37622 | 3414                          | 9.07                               |

# b) Outer Cordon Surveys

The outer cordon survey has been conducted at 11 locations along all the major roads radiating from the Study Area. The volume and composition of inter city traffic entering and leaving the Study Area is recorded at these locations for 16 hour duration on an average working day.

It was observed that the traffic at different locations varies between 3431 PCUs to 25041 PCUs. The maximum daily traffic is observed on Mehsana Highway, followed by Rajkot Highway and Baroda Highway. The peak hour traffic varies from 7.98% to 9.74% of the total daily traffic at various locations. The daily passenger trips varies from 8184 (Borsad Highway) to 72948 (Rajkot Highway). The summary of the traffic characteristics at outer cordon locations is presented in **Table 2.3**.

**Table 2.3 Traffic Characteristics at Outer Cordons** 

| Loc.<br>No. | Name of Location           | Veh.  | PCUs  | Peak<br>Hr.<br>Traffic<br>(PCUs) | %<br>Peak<br>Hour<br>Share/<br>Factor | Daily Pass.<br>Trips |
|-------------|----------------------------|-------|-------|----------------------------------|---------------------------------------|----------------------|
| 1           | Viramgaon Highway          | 11837 | 15127 | 1235                             | 8.16                                  | 35745                |
| 2           | Rajkot Highway             | 17164 | 24748 | 2116                             | 8.55                                  | 72948                |
| 3           | Dholka Highway             | 4670  | 6204  | 604                              | 9.74                                  | 18553                |
| 4           | Baroda Highway             | 11042 | 20484 | 1731                             | 8.45                                  | 40094                |
| 5           | Borsad Highway             | 2609  | 3431  | 307                              | 8.95                                  | 8184                 |
| 6           | Nadiad Highway             | 4058  | 5045  | 443                              | 8.77                                  | 17136                |
| 7           | Vadodra Express<br>Highway | 2986  | 3759  | 363                              | 9.64                                  | 12989                |
| 8           | Kapadwanj Highway          | 6058  | 7594  | 704                              | 9.27                                  | 23671                |
| 9           | Modasa Highway             | 6293  | 7698  | 620                              | 8.05                                  | 19966                |
| 10          | Himmat Nagar<br>Highway    | 7779  | 12014 | 1063                             | 8.85                                  | 28162                |
| 11          | Mehsana Highway            | 15907 | 25041 | 1997                             | 7.98                                  | 56982                |

#### c) Traffic Volume Counts at Screen Line Location

Traffic volume counts at 7 screen line points have been carried out as part of the presented Study. The intensity of the traffic at screen line locations is presented in **Table 2.4**. It can be observed that Gandhi Bridge carries the maximum daily traffic with an approach volume of about 154,290 vehicles (93,938 PCUs) followed by the Nehru Bridge with daily (16 hourly) approach volume of 1,04,937 vehicles (68,531 PCUs).

**Table 2.4 Intensity of Traffic at Screen Line Location** 

| SI.<br>No. | Location       | Total Veh. | Total<br>PCUs | Hour | Peak<br>Hour<br>Factor |
|------------|----------------|------------|---------------|------|------------------------|
| 1          | Vasana Bridge  | 34478      | 47674         | 5585 | 11.71                  |
| 2          | Sardar Bridge  | 101381     | 72901         | 6673 | 9.15                   |
| 3          | Ellis Bridge   | 88975      | 59740         | 7391 | 12.37                  |
| 4          | Nehru Bridge   | 104937     | 68531         | 6226 | 9.08                   |
| 5          | Gandhi Bridge  | 154290     | 93938         | 9109 | 9.70                   |
| 6          | Subhash Bridge | 80662      | 54269         | 4979 | 9.17                   |
| 7          | Indira Bridge  | 23938      | 20472         | 1990 | 9.72                   |

## 2.4.4 Public Transport Passengers' Survey

In order to assess the public transport passenger's characteristics in the Study Area, two different types of surveys related to bus and other public modes such as shared auto, tempo and rail were carried out at selected locations. Bus Stop survey covered bus passenger origin-destination interviews with boarding passenger count at 309 bus stops and 8 Terminals along the proposed Metro Corridor and its influence area. The boarding passengers were interviewed at random, with a sample size of about 10%.

Shared auto passengers' boarding count was also carried out at 309 locations. Rail passenger boarding count and OD surveys were carried out at 15 stations. All surveys were conducted for 16 hour duration (from 6 AM to 10 PM)

# a) Bus and Shared Auto Passengers Survey

The boarding and alighting counts of passengers was carried out at 15 minutes interval for a period of 16 hrs. Income Tax office bus stop has the maximum volume of boarding passengers (about 2700), Laldarwaja Terminal has the maximum volume of boarding passengers (about 35000) and for shared autos, the maximum boarding of passenger takes place near Kalupur Terminal. Bus and Shared Autorickshaw boarding along the proposed corridor is presented in **Table 2.5** 

Table 2.5 Bus and Shared Auto Rickshaw Passengers' Boarding

| SI.<br>No. | Mode          | Total<br>Passengers<br>Boarding |
|------------|---------------|---------------------------------|
| 1          | Bus           | 134425                          |
| 2          | Auto Rickshaw | 62763                           |
|            | Total         | 197188                          |

## b) Rail Passengers' Survey

Rail passengers' boarding and alighting counts and origin-destination surveys were conducted at 15 railway stations. The maximum passenger traffic (boarding & alighting) is observed at Kalupur station (71715 numbers) and the minimum passenger traffic (boarding & alighting) is observed at Gandhi Nagar Station (275 numbers).

## 2.4.5 Household Travel Survey

The objective of the survey conducted at the residences of the Study Area population was to collect the socio - economic characteristics of the households and trip information of the individual members.

The Household travel cum opinion survey for a sample of about 5247 households has been carried out as a part of the Study, to get the information spread over the entire Study Area. These households have been drawn from all the Traffic Zones by random sampling basis. Stratification of the sample was done to cover various income groups.

The following outputs are derived from the analysis of the household travel survey.

- Distribution of the households according to household size and vehicle ownership.
- Distribution of the individuals by their income, occupation, education and expenditure on transport
- Distribution of trips by mode and purpose
- Distribution of trips by trip length

Some of the above outputs / findings are detailed in the following paragraphs.

# a) Households by Size

Distribution of households according to the family size is presented in **Table 2.6**. The table indicates that only 5.53% of the households comprise of 1 or 2 members. About 5% of the households belong to the category of large households, with over 8 persons per household. The majority i.e., 79% of households have between 3 to 6 persons in the family.

Table 2.6 Households by Size

| SI.<br>No. | Household<br>Size | Number of Households | Percentag<br>e |
|------------|-------------------|----------------------|----------------|
| 1          | Up to 2           | 290                  | 5.53           |
| 2          | 3-4               | 2075                 | 39.55          |
| 3          | 5-6               | 2053                 | 39.13          |
| 4          | 7-8               | 568                  | 10.83          |
| 5          | >8                | 261                  | 4.97           |
|            | Total             | 5247                 | 100.0          |

## b) Distribution of Households by Monthly Income

The distribution of sampled households according to their monthly income ranges is presented in **Table 2.7**. About 43% of household have monthly income less than or equal to Rs. 5000 and another 34% have income between Rs. 5001 – 10,000 per month. The percentage of households having monthly income more than Rs. 20,000 is observed to be only 5%. The average monthly household income per month is reported to be about Rs. 7760.

Table 2.7 Distribution of Household According to Monthly Income

| SI<br>No | Income Group        | Number of Individuals<br>in Sampled<br>Households | Percentage |
|----------|---------------------|---------------------------------------------------|------------|
| 1        | <=Rs 5000           | 2232                                              | 42.54      |
| 2        | Rs 5001 – Rs 10000  | 1790                                              | 34.11      |
| 3        | Rs 10001 - Rs 15000 | 625                                               | 11.91      |
| 4        | Rs 15001 – 20000    | 303                                               | 5.77       |
| 5        | >Rs 20000           | 276                                               | 5.26       |
| 6        | No Response         | 21                                                | 0.40       |
|          | Total               | 5247                                              | 100.0      |

# c) Modal Split

Separate Origin-Destination matrices for various modes have been developed from household travel data and used in the modeling process. The distribution of trips according to mode of travel is given in **Table 2.8**. About 38% of the trips are walk trips. The trips performed by 2-Wheelers are about 25% whereas about 15% trips are made by bus, autorickshaw and shared autorickshaw. The trips performed by trains are about 5%.

The per capita trip rate (PCTR) including walk is 1.16, and it is 0.72 excluding walk. The PCTR for motorized trips is 0.52.

Table 2.8 Modal Split - 2004

| SI. No. | Mode                 | No of Trips | Percentage |
|---------|----------------------|-------------|------------|
| 1       | 2-Wheeler            | 1681867     | 25.29      |
| 2       | Car                  | 165207      | 2.48       |
| 3       | Shared Auto<br>Rick. | 381356      | 5.73       |
| 4       | Autorickshaw         | 169019      | 2.54       |
| 5       | Bus                  | 561254      | 8.44       |
| 6       | Train                | 20043       | 0.30       |
| 7       | Cycle                | 1169732     | 17.59      |
| 8       | Walk                 | 2501356     | 37.62      |
|         | Total                | 6649834     | 100.0      |

#### d) Purposewise Distribution of Trips

**Table 2.9** presents the purpose wise distribution of the trips. About 28% of the trips are performed for work and business purpose put together, where as 19% trips are for education and 5% for other purposes which include shopping, social, health and recreation. About 48% trips are return trips.

**Table 2.9 Distribution of Trips by Purpose** 

| SI No | Purpose             | No of Trips | Percentage |
|-------|---------------------|-------------|------------|
| 1     | Work                | 1223971     | 18.41      |
| 2     | Business            | 616557      | 9.27       |
| 3     | Education           | 1249221     | 18.79      |
| 4     | Others              | 303372      | 4.56       |
| 6     | Return Work         | 1177454     | 17.71      |
| 7     | Return<br>Business  | 592519      | 8.91       |
| 8     | Return<br>Education | 1214181     | 18.26      |
| 9     | Return Others       | 272560      | 4.10       |
|       | Total               | 6667160     | 100.0      |

#### 2.4.6 Land use Parameters

One of the important aspects of traffic demand modeling exercise is the estimation of base year and horizon year land use parameters. The land use parameters for the year 2010, 2025 & 2035 are worked out by Louis Berger Report of 2000 in various zones of the Study Area.

The population of Study Area in the year 2003 was about 57.25 lakh. Out of which 37.37 lakh population reside in Ahmedabad Municipal Corporation (AMC) area, 17.64 lakh in Ahmedabad Urban Development Area (AUDA) and about 2.25 lakh in Gandhi Urban Development Area(GUDA).

The zone wise distribution of population & employment for the years 2003, 2010, 2025 & 2035 are presented in **Table 2.10**.

Table 2.10 Zone wise Population and Employment for the Years 2003, 2010, 2025 & 2035

| Zone |       | POPU  | LATION |       |       | EMPLO | YMENT |       |
|------|-------|-------|--------|-------|-------|-------|-------|-------|
| No.  | 2003  | 2010  | 2025   | 2035  | 2003  | 2010  | 2025  | 2035  |
| 1    | 34316 | 34316 | 34316  | 34316 | 38115 | 41525 | 46023 | 49099 |
| 2    | 20154 | 20154 | 20154  | 20154 | 15947 | 19084 | 22546 | 24935 |
| 3    | 10412 | 10703 | 10703  | 10703 | 29619 | 31126 | 32978 | 34195 |
| 4    | 18128 | 21405 | 21405  | 21405 | 8362  | 10425 | 12846 | 14580 |
| 5    | 33891 | 36057 | 36057  | 36057 | 17666 | 21947 | 25877 | 28471 |
| 6    | 62989 | 62989 | 62989  | 62989 | 12487 | 13839 | 18212 | 21928 |
| 7    | 31329 | 31329 | 31329  | 31329 | 4646  | 4697  | 6091  | 7325  |
| 8    | 31329 | 31329 | 31329  | 31329 | 14049 | 15831 | 18407 | 20251 |
| 9    | 25808 | 25808 | 25808  | 25808 | 8410  | 10518 | 13482 | 15735 |
| 10   | 16130 | 16130 | 16130  | 16130 | 36620 | 39192 | 41381 | 42722 |
| 11   | 22582 | 22582 | 22582  | 22582 | 3560  | 4684  | 7114  | 9325  |
| 12   | 39912 | 39912 | 39912  | 39912 | 19082 | 19840 | 23656 | 26717 |
| 13   | 26609 | 26609 | 26609  | 26609 | 20493 | 23338 | 26844 | 29276 |
| 14   | 20813 | 27267 | 27962  | 28470 | 9644  | 10155 | 10297 | 10344 |
| 15   | 25547 | 33110 | 33955  | 34572 | 7577  | 7720  | 7772  | 7794  |
| 16   | 17351 | 21424 | 21971  | 22370 | 6943  | 7030  | 7068  | 7086  |
| 17   | 15086 | 15581 | 15979  | 16269 | 10049 | 10692 | 10834 | 10868 |
| 18   | 21536 | 25206 | 27016  | 28388 | 1910  | 2361  | 2605  | 2735  |
| 19   | 26358 | 28356 | 30392  | 31936 | 9858  | 10103 | 10241 | 10314 |
| 20   | 56939 | 56939 | 56939  | 56939 | 5804  | 5919  | 6098  | 6216  |
| 21   | 22241 | 27687 | 29064  | 30089 | 16077 | 16109 | 16249 | 16346 |
| 22   | 8643  | 12412 | 13029  | 13488 | 3422  | 3541  | 3612  | 3651  |
| 23   | 16578 | 23868 | 25055  | 25938 | 781   | 1189  | 1375  | 1461  |
| 24   | 12463 | 15276 | 16035  | 16601 | 2296  | 2364  | 2446  | 2499  |
| 25   | 10902 | 16231 | 17038  | 17639 | 4413  | 4667  | 4800  | 4869  |
| 26   | 20496 | 26638 | 26860  | 27019 | 12592 | 12849 | 12896 | 12904 |
| 27   | 3223  | 4296  | 4332   | 4358  | 5052  | 5058  | 5061  | 5062  |

| Zone | POPULATION |        |        | EMPLOYMENT |       |       |       |       |
|------|------------|--------|--------|------------|-------|-------|-------|-------|
| No.  | 2003       | 2010   | 2025   | 2035       | 2003  | 2010  | 2025  | 2035  |
| 28   | 17644      | 21481  | 21660  | 21789      | 9755  | 11037 | 11245 | 11253 |
| 29   | 13480      | 21482  | 21661  | 21790      | 35283 | 35517 | 35562 | 35570 |
| 30   | 9535       | 12030  | 12129  | 12201      | 46269 | 46621 | 46681 | 46688 |
| 31   | 18677      | 20622  | 21081  | 21415      | 6303  | 6366  | 6411  | 6437  |
| 32   | 21533      | 23200  | 23716  | 24092      | 8830  | 9400  | 9534  | 9569  |
| 33   | 20485      | 24059  | 24595  | 24985      | 3528  | 3626  | 3690  | 3727  |
| 34   | 14600      | 18044  | 18446  | 18738      | 2020  | 2155  | 2213  | 2241  |
| 35   | 47467      | 54611  | 58603  | 61631      | 14070 | 14214 | 14340 | 14415 |
| 36   | 38837      | 44682  | 47947  | 50425      | 5532  | 5652  | 5757  | 5820  |
| 37   | 40019      | 52221  | 55680  | 58290      | 9720  | 9904  | 10082 | 10191 |
| 38   | 33275      | 46309  | 49376  | 51691      | 3858  | 4089  | 4253  | 4348  |
| 39   | 36770      | 47294  | 50538  | 52990      | 8091  | 8183  | 8278  | 8338  |
| 40   | 39834      | 51235  | 54749  | 57406      | 7619  | 8097  | 8503  | 8751  |
| 41   | 48472      | 63548  | 66707  | 69060      | 19733 | 20665 | 21239 | 21557 |
| 42   | 9583       | 9929   | 10423  | 10791      | 4532  | 5157  | 5301  | 5335  |
| 43   | 19574      | 25816  | 27100  | 28056      | 3935  | 4012  | 4058  | 4084  |
| 44   | 73584      | 100820 | 105834 | 109567     | 23857 | 24441 | 24827 | 25045 |
| 45   | 45389      | 59805  | 62779  | 64993      | 14885 | 15241 | 15523 | 15689 |
| 46   | 11425      | 15467  | 16236  | 16808      | 5388  | 5469  | 5524  | 5555  |
| 47   | 19337      | 27841  | 29225  | 30255      | 16968 | 17251 | 17416 | 17506 |
| 48   | 27770      | 40481  | 42494  | 43993      | 12091 | 12560 | 12821 | 12960 |
| 49   | 44553      | 60721  | 63741  | 65989      | 7016  | 7250  | 7425  | 7527  |
| 50   | 61156      | 103112 | 108239 | 112057     | 14628 | 15533 | 16109 | 16433 |
| 51   | 88547      | 110749 | 116256 | 120357     | 19009 | 19330 | 19598 | 19758 |
| 52   | 77313      | 109222 | 114653 | 118697     | 24459 | 25396 | 25998 | 26336 |
| 53   | 72679      | 96116  | 100895 | 104454     | 19069 | 19507 | 19822 | 20004 |
| 54   | 13976      | 20565  | 21588  | 22349      | 17484 | 17690 | 17818 | 17889 |
| 55   | 11117      | 12786  | 13422  | 13895      | 1077  | 1286  | 1375  | 1416  |
| 56   | 24692      | 24692  | 24692  | 24692      | 218   | 512   | 670   | 744   |
| 57   | 29154      | 29834  | 31317  | 32422      | 5210  | 5531  | 5719  | 5821  |
| 58   | 14339      | 15982  | 16776  | 17368      | 3800  | 4035  | 4131  | 4175  |
| 59   | 21471      | 21471  | 21471  | 21471      | 7518  | 7739  | 7845  | 7898  |
| 60   | 91952      | 91952  | 91952  | 91952      | 7183  | 7477  | 7677  | 7791  |
| 61   | 75232      | 75232  | 75232  | 75232      | 4357  | 4539  | 4663  | 4734  |
| 62   | 129168     | 129168 | 129168 | 129168     | 29122 | 30282 | 31072 | 31522 |
| 63   | 67221      | 71580  | 75140  | 77790      | 14149 | 14771 | 15262 | 15555 |
| 64   | 28917      | 33440  | 35103  | 36342      | 34730 | 35178 | 35434 | 35571 |
| 65   | 91113      | 95474  | 100221 | 103756     | 44873 | 45299 | 45582 | 45742 |
| 66   | 35266      | 42008  | 44097  | 45653      | 63278 | 63339 | 63548 | 63692 |
| 67   | 44905      | 63013  | 66146  | 68479      | 8736  | 9467  | 9862  | 10071 |
| 68   | 74477      | 104640 | 109843 | 113717     | 20568 | 21970 | 22841 | 23327 |
| 69   | 78392      | 103876 | 109041 | 112887     | 30987 | 31909 | 32510 | 32848 |
| 70   | 82237      | 110749 | 116256 | 120357     | 30684 | 30961 | 31218 | 31374 |
| 71   | 103408     | 106931 | 112248 | 116207     | 13318 | 13976 | 14359 | 14566 |
| 72   | 54296      | 54296  | 54296  | 54296      | 4618  | 5083  | 5331  | 5461  |
| 73   | 66360      | 66360  | 66360  | 66360      | 8346  | 9092  | 9489  | 9698  |

| Zone |       | POPULATION |        |        | EMPLOYMENT |       |       |       |
|------|-------|------------|--------|--------|------------|-------|-------|-------|
| No.  | 2003  | 2010       | 2025   | 2035   | 2003       | 2010  | 2025  | 2035  |
| 74   | 40451 | 40451      | 40451  | 40451  | 12258      | 12492 | 12648 | 12736 |
| 75   | 18097 | 18097      | 18097  | 18097  | 11342      | 11445 | 11513 | 11552 |
| 76   | 47903 | 47903      | 48284  | 48558  | 12818      | 12913 | 12977 | 13013 |
| 77   | 76578 | 106167     | 111446 | 115377 | 9080       | 9715  | 10137 | 10378 |
| 78   | 27834 | 34707      | 36432  | 37717  | 2773       | 2987  | 3101  | 3161  |
| 79   | 63740 | 73752      | 77419  | 80150  | 29740      | 30246 | 30636 | 30865 |
| 80   | 59542 | 78915      | 82839  | 85761  | 21955      | 22332 | 22571 | 22703 |
| 81   | 14503 | 17323      | 18185  | 18826  | 10998      | 11025 | 11074 | 11106 |
| 82   | 76366 | 98761      | 103671 | 107327 | 8108       | 8941  | 9485  | 9796  |
| 83   | 2183  | 2824       | 2964   | 3069   | 118        | 138   | 151   | 158   |
| 84   | 55005 | 55005      | 57733  | 59763  | 15088      | 15436 | 15668 | 15800 |
| 85   | 44006 | 44006      | 46187  | 47811  | 6132       | 6277  | 6375  | 6430  |
| 86   | 11001 | 11001      | 11547  | 11953  | 1568       | 1617  | 1650  | 1669  |
| 87   | 67080 | 67080      | 67080  | 67080  | 17298      | 17865 | 18242 | 18456 |
| 88   | 54883 | 54883      | 54883  | 54883  | 3358       | 3617  | 3788  | 3886  |
| 89   | 12171 | 12171      | 12171  | 12171  | 29499      | 29553 | 29591 | 29612 |
| 90   | 42601 | 42601      | 42601  | 42601  | 10573      | 10812 | 10977 | 11071 |
| 91   | 24343 | 24343      | 24343  | 24343  | 1388       | 1641  | 1814  | 1915  |
| 92   | 30429 | 30429      | 30429  | 30429  | 1710       | 1813  | 1883  | 1924  |
| 93   | 68416 | 68416      | 70322  | 71716  | 11829      | 13074 | 13889 | 14355 |
| 94   | 17104 | 17104      | 17581  | 17929  | 25928      | 26492 | 26865 | 27075 |
| 95   | 28508 | 28508      | 29301  | 29882  | 4341       | 5140  | 5661  | 5961  |
| 96   | 12171 | 12171      | 12171  | 12171  | 789        | 893   | 964   | 1006  |
| 97   | 4134  | 5347       | 5612   | 5810   | 1411       | 1438  | 1456  | 1466  |
| 98   | 25477 | 28642      | 30066  | 31127  | 3727       | 3860  | 3951  | 4003  |
| 99   | 25477 | 28642      | 30066  | 31127  | 615        | 719   | 790   | 832   |
| 100  | 45518 | 51174      | 53718  | 55613  | 10443      | 11338 | 11952 | 12307 |
| 101  | 6359  | 13641      | 20634  | 27730  | 3568       | 5056  | 7182  | 8907  |
| 102  | 4242  | 6764       | 13393  | 21816  | 899        | 1368  | 2609  | 3964  |
| 103  | 10530 | 15563      | 26057  | 37654  | 3386       | 4641  | 7096  | 9305  |
| 104  | 294   | 318        | 2252   | 9116   | 821        | 1008  | 2391  | 4339  |
| 105  | 2630  | 2905       | 11031  | 28611  | 738        | 929   | 2377  | 4543  |
| 106  | 16990 | 21890      | 27974  | 33330  | 4115       | 6631  | 10551 | 14004 |
| 107  | 9625  | 9870       | 10221  | 10480  | 4807       | 5929  | 7340  | 8368  |
| 108  | 10094 | 15437      | 34148  | 60207  | 2631       | 3752  | 7162  | 10961 |
| 109  | 3509  | 5186       | 13372  | 26306  | 798        | 1267  | 3336  | 6355  |
| 110  | 3247  | 3658       | 4358   | 4938   | 633        | 831   | 1133  | 1374  |
| 111  | 41035 | 48086      | 63448  | 77343  | 13814      | 18502 | 26955 | 34231 |
| 112  | 10565 | 11030      | 11856  | 12483  | 2670       | 3399  | 4438  | 5240  |
| 113  | 5815  | 6318       | 7067   | 7655   | 1823       | 2312  | 2973  | 3473  |
| 114  | 7850  | 9020       | 11110  | 12894  | 2656       | 3689  | 5425  | 6911  |
| 115  | 5228  | 5877       | 7000   | 7932   | 2270       | 2864  | 3688  | 4314  |
| 116  | 10515 | 11158      | 11993  | 12627  | 2960       | 3749  | 4767  | 5524  |
| 117  | 4849  | 5544       | 10328  | 16108  | 1328       | 1848  | 3156  | 4470  |
| 118  | 16991 | 21951      | 38012  | 56266  | 4356       | 6134  | 10791 | 15601 |
| 119  | 13713 | 16594      | 22603  | 28187  | 2918       | 3871  | 5518  | 6906  |

| Zone | one POPULATION |        | EMPLOYMENT |        |       |       |       |        |
|------|----------------|--------|------------|--------|-------|-------|-------|--------|
| No.  | 2003           | 2010   | 2025       | 2035   | 2003  | 2010  | 2025  | 2035   |
| 120  | 24316          | 31452  | 45702      | 59683  | 7695  | 10749 | 16591 | 21863  |
| 121  | 40616          | 53498  | 92641      | 137132 | 6730  | 10092 | 19460 | 29844  |
| 122  | 26865          | 34986  | 60585      | 89680  | 5449  | 8376  | 16691 | 26140  |
| 123  | 13853          | 15703  | 23773      | 31968  | 3447  | 4701  | 8316  | 12107  |
| 124  | 9565           | 10910  | 15681      | 20320  | 3123  | 4085  | 6118  | 7944   |
| 125  | 8634           | 9537   | 10963      | 12110  | 2269  | 2864  | 3677  | 4294   |
| 126  | 3426           | 3937   | 4849       | 5628   | 1639  | 2072  | 2690  | 3163   |
| 127  | 11221          | 12774  | 15496      | 17789  | 3598  | 4809  | 6754  | 8357   |
| 128  | 41628          | 49747  | 65673      | 80084  | 9090  | 12509 | 18548 | 23787  |
| 129  | 20228          | 23462  | 44509      | 70321  | 8116  | 10624 | 19144 | 28365  |
| 130  | 12818          | 14253  | 36811      | 72497  | 5836  | 7463  | 16521 | 28420  |
| 131  | 8856           | 9402   | 10807      | 11938  | 3881  | 4855  | 6281  | 7379   |
| 132  | 6790           | 7046   | 9075       | 10873  | 2245  | 2815  | 4077  | 5192   |
| 133  | 9004           | 10760  | 14197      | 17306  | 1923  | 2786  | 4414  | 5903   |
| 134  | 8004           | 8758   | 9913       | 10831  | 4283  | 5362  | 6792  | 7859   |
| 135  | 15883          | 19356  | 56852      | 122740 | 6241  | 8670  | 19875 | 34761  |
| 136  | 6942           | 8796   | 12860      | 16867  | 2424  | 3195  | 4560  | 5716   |
| 137  | 7375           | 7816   | 10313      | 12571  | 2834  | 3597  | 5028  | 6233   |
| 138  | 9097           | 13446  | 21855      | 30920  | 1728  | 3292  | 6758  | 10577  |
| 139  | 20519          | 24253  | 43682      | 66501  | 6143  | 8530  | 16741 | 26206  |
| 140  | 12008          | 14814  | 34326      | 62560  | 4328  | 5622  | 8780  | 11754  |
| 141  | 5695           | 6430   | 7733       | 8823   | 1403  | 1871  | 2615  | 3226   |
| 142  | 32504          | 51831  | 89754      | 132858 | 6044  | 12724 | 28190 | 46118  |
| 143  | 31590          | 50372  | 87228      | 129120 | 14275 | 22476 | 40358 | 58531  |
| 144  | 13730          | 16460  | 34766      | 59306  | 3375  | 4595  | 10742 | 19092  |
| 145  | 30735          | 36017  | 40897      | 44782  | 12979 | 16292 | 20425 | 23454  |
| 146  | 175005         | 239582 | 267856     | 290073 | 26065 | 36244 | 48998 | 58762  |
| 147  | 6599           | 8391   | 30719      | 77621  | 1743  | 2672  | 9631  | 23041  |
| 148  | 91606          | 122152 | 166486     | 207698 | 37628 | 49022 | 64122 | 75611  |
| 149  | 49854          | 85704  | 113085     | 137850 | 8386  | 14870 | 24858 | 33844  |
| 150  | 56243          | 96689  | 179062     | 278078 | 10026 | 17038 | 31474 | 46222  |
| 151  | 120832         | 175216 | 195894     | 212142 | 21835 | 33112 | 44095 | 51856  |
| 152  | 50720          | 109768 | 223697     | 371968 | 8414  | 22838 | 58162 | 102418 |
| 153  | 60044          | 80630  | 92683      | 102380 | 11339 | 15009 | 19313 | 22471  |
| 154  | 100986         | 129644 | 173511     | 213668 | 9599  | 21551 | 43398 | 65884  |
| 155  | 7194           | 10890  | 20584      | 32435  | 2305  | 3348  | 5969  | 8682   |
| 156  | 101972         | 119496 | 137357     | 151728 | 21728 | 28736 | 40181 | 49617  |
| 157  | 89800          | 115830 | 155678     | 192286 | 11643 | 18542 | 31748 | 44456  |
| 158  | 5194           | 6980   | 10400      | 13828  | 1295  | 2014  | 3272  | 4424   |
| 159  | 62034          | 84925  | 119996     | 153605 | 11265 | 17988 | 30076 | 41394  |
| 160  | 5253           | 7073   | 21383      | 47126  | 1771  | 2843  | 9628  | 21925  |
| 161  | 4810           | 6351   | 17126      | 34785  | 1488  | 2150  | 5407  | 10061  |
| 162  | 5646           | 6616   | 8729       | 10641  | 1757  | 2414  | 3644  | 4735   |
| 163  | 3317           | 4203   | 5545       | 6759   | 1337  | 1976  | 3051  | 3999   |
| 164  | 3307           | 4528   | 7329       | 10338  | 474   | 700   | 1204  | 1704   |
| 165  | 1538           | 1550   | 9125       | 32370  | 402   | 491   | 1168  | 2124   |

| Zone  | POPULATION |         |         |          | EMPLO   | YMENT   |         |         |
|-------|------------|---------|---------|----------|---------|---------|---------|---------|
| No.   | 2003       | 2010    | 2025    | 2035     | 2003    | 2010    | 2025    | 2035    |
| 166   | 3279       | 3481    | 3733    | 3924     | 1136    | 1427    | 1803    | 2082    |
| 167   | 2320       | 2464    | 2642    | 2777     | 659     | 831     | 1055    | 1221    |
| 168   | 3874       | 4452    | 5484    | 6364     | 790     | 1025    | 1383    | 1668    |
| 169   | 13598      | 19000   | 27584   | 36000    | 2171    | 3207    | 5043    | 6697    |
| 170   | 6598       | 7004    | 7511    | 7895     | 1189    | 1571    | 2097    | 2505    |
| 171   | 43280      | 63391   | 89915   | 115416   | 22171   | 30840   | 44296   | 55470   |
| 172   | 54859      | 54859   | 54859   | 54859    | 17713   | 31313   | 41390   | 47665   |
| 173   | 2016       | 2362    | 3011    | 3582     | 518     | 769     | 1235    | 1663    |
| 174   | 1703       | 1881    | 2162    | 2388     | 490     | 653     | 900     | 1099    |
| 175   | 4246       | 5813    | 9733    | 14064    | 722     | 1156    | 2237    | 3417    |
| 176   | 2559       | 2940    | 3621    | 4203     | 273     | 404     | 639     | 851     |
| 177   | 6022       | 6394    | 6856    | 7207     | 2761    | 3408    | 4219    | 4809    |
| 178   | 1579       | 1677    | 1798    | 1890     | 460     | 568     | 702     | 800     |
| 179   | 8680       | 11883   | 39710   | 94008    | 2903    | 4025    | 10737   | 20930   |
| 180   | 134        | 1100    | 14121   | 87425    | 240     | 463     | 4652    | 22617   |
| 181   | 23763      | 27520   | 44546   | 62837    | 30109   | 37498   | 50238   | 60539   |
| 182   | 50862      | 69630   | 108957  | 150022   | 17334   | 24950   | 40516   | 55193   |
| 183   | 33017      | 39457   | 63868   | 90092    | 4178    | 5936    | 10920   | 16283   |
| 184   | 95421      | 130631  | 204412  | 281454   | 27742   | 41976   | 72275   | 102142  |
| 185   | 10416      | 13197   | 27926   | 47703    | 3511    | 4967    | 10499   | 17297   |
| 186   | 2248       | 9679    | 20481   | 34985    | 575     | 2499    | 6896    | 12255   |
| Total | 5724927    | 7020643 | 8446668 | 10125421 | 1803494 | 2102284 | 2637401 | 3180483 |

Source: Louise Berger Study - 2000

# 2.5 Demand Modeling and Forecast

#### 2.5.1 General

The transportation study process consists of development of formulae (or models), enabling forecast of travel demand, and development of alternative strategies for handling this demand. It is not just one model, but a series of inter-linked and inter-related models of varying levels of complexity, dealing with different facets of travel demand. Through these models, the transportation study process as a whole is checked and calibrated before it is used for future travel predictions.

In the present study, a four-stage transport demand model has been developed for estimating future travel demand. The normal and easily available planning variables at traffic zone levels such as population and employment have been made use of in transport demand analysis.

The four stages of transportation planning process are:

- Trip-end prediction or trip generation and attractions the determination of the number of person trips leaving a zone irrespective of destination and the number of trips attracted to a zone, irrespective of origin.
- **Trip distribution** the linking of the trip origins (generation) with their destinations (attraction)
- **Modal split** the separation of trip by public transport modes or by private modes.
- **Assignment** the allocation of trips between a pair of zones to the most likely route(s) on the network.

The details of urban transport planning process as adopted for the Study are shown in **Figure 2.2**.

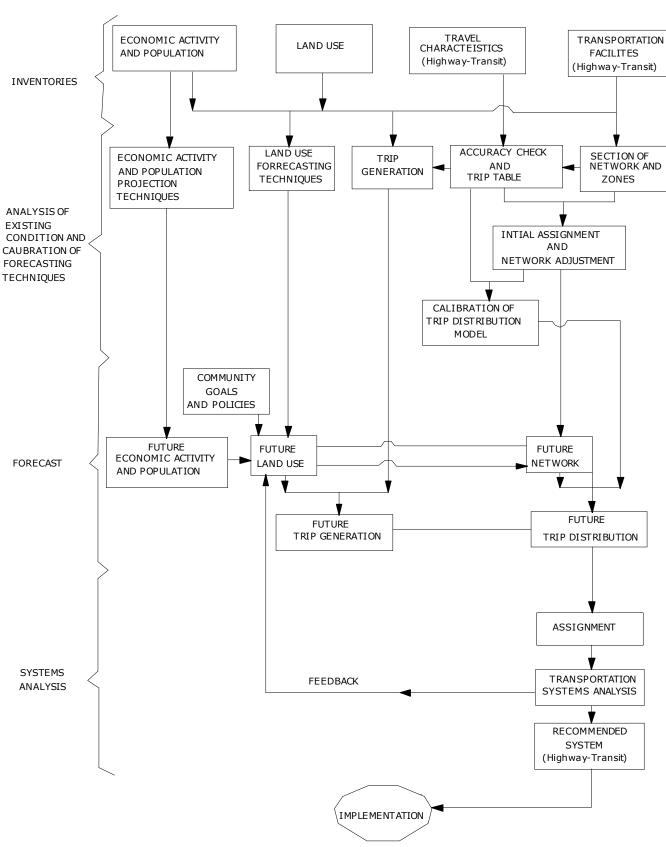



Figure 2.2 Elements of Urban Transportation Planning Process

## 2.5.2 Trip Generation

## **Home Based Work Trips**

The trip generation sub-model for home based one-way work trips produced/attracted from/to a zone by all modes (mass, fast and slow) is developed and presented in Table 2.11. The independent variable for trip production is the zonal population, whereas for the purpose of attraction, the independent variable is the employment in each zone.

Table 2.11 Trip Generation Sub-Models For Home Based One-Way Work Trips – 2003

| Dependent<br>Variable | Independent<br>Variable | Constant Co-<br>efficient | Regression<br>Co-efficient<br>(Trip Rate) | (R <sup>2</sup> )<br>Co-efficient of<br>Determination |  |  |
|-----------------------|-------------------------|---------------------------|-------------------------------------------|-------------------------------------------------------|--|--|
| (Y)                   | (X)                     | (a)                       | (b)                                       |                                                       |  |  |
| Trip Prod             | uction                  |                           |                                           |                                                       |  |  |
| All Modes             | Population              | -61.9426                  | 0.323506                                  | 0.97                                                  |  |  |
| Trip Attraction       |                         |                           |                                           |                                                       |  |  |
| All Modes             | Employment              | 1639.07                   | 0.851493                                  | 0.57                                                  |  |  |

## Home-Based Education Trips

Summary of regression analysis for home-based one-way education trips produced/attracted from/to a zone by different modes is given in **Table 2.12**. The independent variables used are zonal population and zonal school enrolment respectively.

Table 2.12 Trip Generation Sub-Models For Home Based One-Way Education Trips – 2003

| Dependent<br>Variable | Independent<br>Variable | Constant Co-<br>efficient | Regression<br>Co-efficient<br>(Trip Rate) | (R <sup>2</sup> ) Co-efficient of Determination |  |  |  |
|-----------------------|-------------------------|---------------------------|-------------------------------------------|-------------------------------------------------|--|--|--|
| (Y)                   | (X)                     | (a)                       | (b)                                       |                                                 |  |  |  |
| Trip Prod             | Trip Production         |                           |                                           |                                                 |  |  |  |
| All Modes             | Population              | -218.28                   | 0.225299                                  | 0.94                                            |  |  |  |

## Home-Based Other Trips

Summary of regression analysis for one-way home-based other purpose trips produced/attracted from/to a zone are presented in **Table 2.13**.

Table 2.13 Trip Generation Sub-Models For Home Based One-Way Other Trips – 2003

| Dependent<br>Variable | Independent<br>Variable | Constant Co-<br>efficient | Regression<br>Co-efficient | (R <sup>2</sup> )<br>Co-efficient of |  |  |
|-----------------------|-------------------------|---------------------------|----------------------------|--------------------------------------|--|--|
|                       |                         |                           | (Trip Rate)                | Determination                        |  |  |
| (Y)                   | (X)                     | (a)                       | (b)                        |                                      |  |  |
| Trip Prod             | duction                 |                           |                            |                                      |  |  |
| All Modes             | Population              | 192.5665                  | 0.046735                   | 0.44                                 |  |  |
| Trip Attraction       |                         |                           |                            |                                      |  |  |
| All Modes             | Employment              | 5066.982                  | 2.960293                   | 0.32                                 |  |  |

# Home-Based Total Trips

Summary of regression analysis for one-way home-based total trips produced/attracted from/to a zone are presented in **Table 2.14.** 

Table 2.14 Trip Generation Sub-Models for Home Based One-Way Total Trips – 2003

| Dependent<br>Variable | Independent<br>Variable | Constant Co-<br>efficient | Regression<br>Co-efficient<br>(Trip Rate) | (R <sup>2</sup> ) Co-efficient of Determination |  |  |
|-----------------------|-------------------------|---------------------------|-------------------------------------------|-------------------------------------------------|--|--|
| (Y)                   | (X)                     | (a)                       | (b)                                       |                                                 |  |  |
| Trip Proa             | luction                 |                           |                                           |                                                 |  |  |
| All Modes             | Population              | 5456.395                  | 0.984282                                  | 0.78                                            |  |  |
| Trip Attraction       |                         |                           |                                           |                                                 |  |  |
| All Modes             | Employment              | 2113.579                  | 0.415655                                  | 0.58                                            |  |  |

# 2.5.3 Trip Distribution

The gravity model formulation has been used for developing the synthetic O-D matrix for the intra-city trips. The formulation of Gravity model used is as under:

$$T_{ij}^{n} = P_{i}^{n} [A_{j}^{n} \exp(-a^{n}C_{ij}^{m}) / \Sigma A_{j}^{n} \exp(-a^{n}C_{ij}^{m})]$$

#### Where

T<sub>ij</sub><sup>n</sup> = The number of trips produced in zone I and attracted to zone j for nth purpose (work, education, other)

 $P_i^n$  = The total number of trips produced in zone I for nth purpose

 $A_{j}^{n}$  = The total number of trips attracted to zone j for nth purpose

a<sup>n</sup> = Parameter calibrated for base year for nth purpose

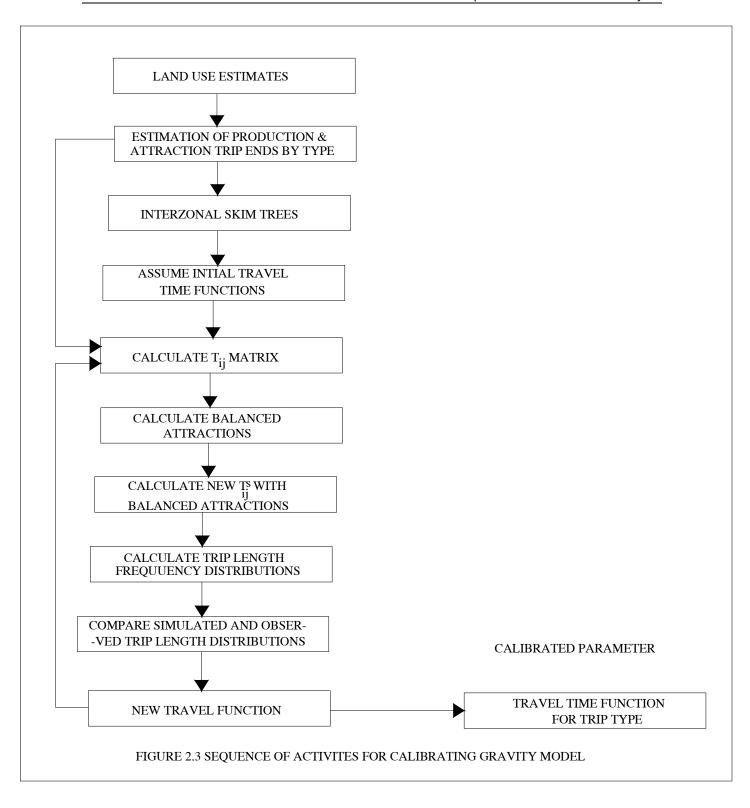
C<sub>ij</sub><sup>m</sup> = Travel time between pair of zones I & j by mode m

# Gravity Model - Calibration Process

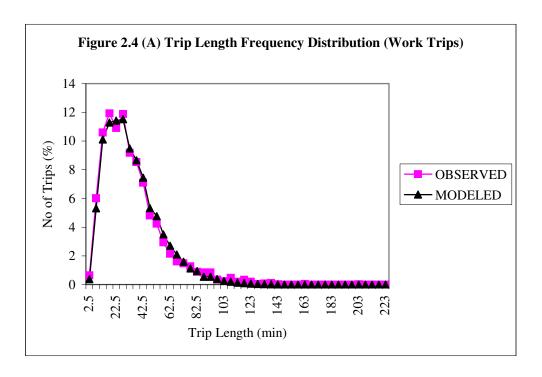
The sequence of activities involved in the calibration of Gravity Model is shown in **Figure 2.3** Only the home based trips for purposes (work, education, other and total), which have been simulated for comparison with the observed flows.

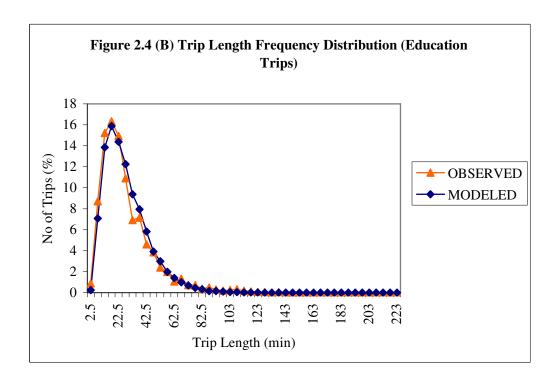
The calibrated values of Gravity Model parameter for home-based trips for various purposes are presented in **Table 2.15** where W, E, O denote parameters for work, education and other purposes respectively.

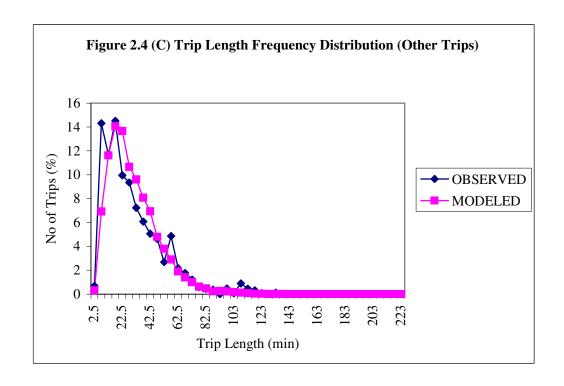
Calibration process included comparison of observed and simulated mean trip lengths as well as shapes of the trip length frequency distribution.

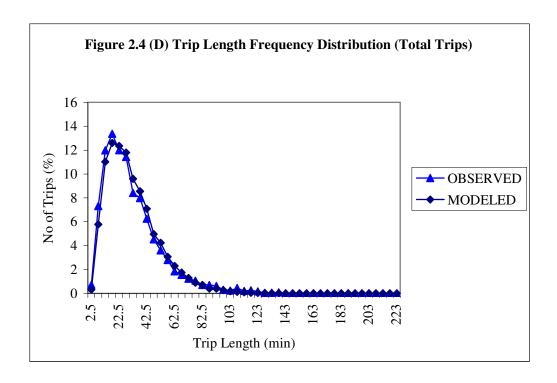

**Table 2.15 Calibrated Gravity Model Parameters** 

| Trip Purpose | Parameter | Parameter<br>Value | Mean Trip<br>Length |
|--------------|-----------|--------------------|---------------------|
| Work         | W         | 0.048              | 34.20               |
| Education    | E         | 0.069              | 27.88               |
| Other        | 0         | 0.054              | 30.47               |
| Total        |           | 0.4165             | 32.16               |


The observed trip length frequency distributions for different purposes (work, education and other) were obtained from the 2003 Household Travel Survey data. For simulated trip length frequency distributions, the parameter values (negative exponential) were varied until the simulated and observed trip length frequency distributions for each purpose exhibited the following.


- The shape and position of both curves relatively close to each other when compared visually.
- The difference between mean trip lengths was within 3 percent variation


The calibration procedure developed by Bureau of Public Roads was used, which adjusts the measure of attraction used in the Gravity Model. Eight such iterations of attraction trip and balancing procedure were carried out for each trip purpose separately.




A comparison of observed and simulated trip length frequency for work, education, other and total trips is presented in **Figure 2.4 A** to **2.4 D**.









The measure of deterrence is the perceived inter-zonal generalized cost – this is what the traveler unconsciously thinks it costs him to travel from one place to another. For each pair of zones, generalized cost for a public transport trip or by any other mode is determined. For any interzonal trip, the cost between each of the two zone centroids and between them and the appropriate actual network nodes is added to establish the least cost journey through the whole network between the zones. For example, for a trip including one or more public transport links and walk links thereto, the public transport generalized cost would be made up of:

- a) Cost of walking time to bus stop (from notional centroid link)
- b) Cost of waiting time at bus stop
- c) Cost of traveling time on bus
- d) Bus fare
- e) Cost of interchange waiting time where appropriate
- f) Further c) and d) where appropriate
- g) Cost of walking time from bus stop to destination (by notional centroid link).

In a somewhat similar way, generalized cost for other modes is determined. The least-cost journey from any zone to another is determined by a tree building process. Separate least-cost journey trees are built for public transport trips and for trips by other modes.

For the purpose of analysis in this study,  $C_{ij}$  values, which should normally be based on Generalized Cost, have been taken only in terms of travel time. Travel time matrices have been computed and 'skim trees' built representing shortest travel paths between each pair of zones taking road congestion into consideration.

# 2.5.4 Modal Split

The household travel survey carried out in 2003 shows a less modal split in favour of public transport. The lower modal split in favour of public transport system shows the deficiency in public Transport system and also the non-availability of public transport system in major routes of the city. The reduction in fleet size of AMTS bus services is also one of the major reason for lower public transport share.

A good mass transport system expected to increase a higher modal split in favour of public transport in the year 2010, 2025 and 2035.

## 2.5.5 Trip Assignment

For the purpose of this study, Capacity restrained assignment technique has been followed. In this method of assignment, private and public transport trip matrices are loaded onto their respective networks, using an incremental assignment method. The trip matrices are assigned to the shortest paths generated successively after assignment of small lots each of 10% increment of the trips matrices. The incremental assignment proceeds by updating the private and public transport networks using the speed flow relationships of the links until 100% of the two matrices are assigned.

The assignment is largely controlled by alternative paths, which are built by the shortest path algorithm through the network. There is simultaneous building of shortest paths for the two networks (mass transport and private trips), and rules adopted are:

- 1. The paths are not allowed to be built through the zone centroids, other than the origin and the destination end.
- 2. Due to the type of signal phasing adopted for intersections, the right turning traffic has to wait for a few seconds more than the straight moving traffic. Also, as the right turners have to follow a curved and longer path through the intersection, a penalty of 30 seconds is adopted for such assignment.

The road network is assigned the road capacity based on the available lane widths. The types of roads and their capacities are given in **Table 2.16** 

**Table 2.16 Types of Roads and Their Capacities** 

| Road Type      | Capacity in PCU's per Hour* |
|----------------|-----------------------------|
| 2-Lane Divided | 2000                        |
| 4-Lane Divided | 4000                        |
| 6-Lane Divided | 6000                        |

It has been assumed that roads have a given capacity, while the existing rail network has unlimited capacity.

In addition to the capacity values, the speed flow relationships of the three types of links are required for modifying the speeds for each incremental loading. A mathematical model was developed for each link type. These mathematical modes are as follows

2-Lane Divided 
$$S = S_f(1.0 - 0.57 \text{ (V/C)}^{30}$$

4-Lane Divided 
$$S = S_f(1.0 - 0.63 \text{ (V/C)}^{27}$$

6-Lane Divided 
$$S = S_f (1.0 - 0.60 \text{ (V/C)}^{25}$$

Where

S = Speed in kmph

S<sub>f</sub> = Free flow speed in kmph V = Assigned volume in PCU's C = Capacity of road link in PCU's

The initial free flow speeds taken for the assignment of public and private modes are summarised in **Table 2.17** 

**Table 2.17 Free Flow Speeds** 

| Mode      | Free   | Free Flow Speed in kmph* |        |  |  |  |
|-----------|--------|--------------------------|--------|--|--|--|
|           | 2-Lane | 4-Lane                   | 6-Lane |  |  |  |
| Public    | 15     | 20                       | 25     |  |  |  |
| Transport |        |                          |        |  |  |  |
| Private   | 30     | 35                       | 40     |  |  |  |
| Transport |        |                          |        |  |  |  |

The results from the incremental assignments, which are in terms of person trips, have to be converted to PCU's for updating the link speeds. As the occupancy levels of the private modes are drastically different from the road-based public transport modes, separate passenger to PCU conversion factors have been derived for the two types of travel. For this purpose, the city has been divided into two regions - each having a different mix of traffic characteristics. The factors used for the two regions are given in **Table 2.18** 

The roads are also used by goods vehicles and other slow moving vehicles. The capacity comparison and speed modifications must take movement of these vehicles and mixed traffic conditions into account. Thus, after the person trips are converted to vehicles trips in terms of PCUs, the goods factors is used to incorporate the mixed flow conditions because of goods and the slow moving vehicles.

**Table 2.18 PCU Conversion Factors** 

| Region              | PCU Conversion Factors |               |       |  |  |
|---------------------|------------------------|---------------|-------|--|--|
|                     | Pub.<br>Vehicles       | Pvt. Vehicles | Goods |  |  |
| AMC Area            | 0.067579               | 0.415010      | 1.20  |  |  |
| Rest of AMC<br>Area | 0.067108               | 0.360208      | 1.23  |  |  |

In the assignment process, the link speeds get modified by appropriate modeling of speed flow relationships. As the volume-capacity ratio increases towards 1.0, the link speed decreases fast to a residual value of about 10 to 15 kmph. In case of further loading of the link (which is possible in absence of alternate paths) beyond volume/capacity ratio of 1.0, the speeds may get negative.

Accordingly, to control the speed to a non-negative residual value, the lowest bound for public and private mode speeds is taken as 5.0 and 10.0 kmph respectively.

The base year assigned trips were compared with the ground counts of selected arterials to establish the validity of models as stated earlier for working out horizon year (2035) transport demand forecast.

#### 2.6 TRANSPORT DEMAND FORECAST

- 2.6.1 The following assumptions have been made while working out the traffic demand on the proposed Metro & Regional Rail System:
  - 1. The basic inputs to the study i.e. the land use parameter for the year 2010, 2025 & 2035 are worked out by Louis Berger Report 2000 presented in **Table 2.10**. The land use parameters population and Employment is available in AUDA and GUDA master plan up to the year 2011.
  - 2. The integrated transport network includes the future road network proposals, Metro network & Regional Rail System.
  - 3. For working out a path between an origin and destination, travel time has been considered.
  - 4. Proper inter-modal integration facilities, including approach roads are assumed to be available at all stations of Metro and Regional Rail System.

- 5. Feeder services have been assumed to be available at all stations of Metro and Regional Rail System.
- 6. Wherever possible, proper passenger integration has been assumed between Metro Stations and Regional Rail System.
- 7. Common ticketing for Metro corridors with regional rail system.
- 2.6.2 The summary of horizon year (2010, 2025 &2035) transport demand forecasts for study area is presented in **Table 2.19**.

**Table 2.19 Summary of Transport Demand Forecast** 

| SI.No. | ITEM                                                      | FIGURES (Million) |      |      |       |
|--------|-----------------------------------------------------------|-------------------|------|------|-------|
|        |                                                           | 2003              | 2010 | 2025 | 2035  |
| 1      | Population                                                | 5.73              | 7.02 | 8.45 | 10.13 |
| 2      | Employment                                                | 1.80              | 2.10 | 2.64 | 3.18  |
| 3      | Per Capital Trip<br>Rate (Excluding<br>Walk)              | 0.72              | 0.80 | 0.90 | 1.00  |
| 4      | Total Trips                                               | 4.55              | 6.11 | 8.31 | 10.99 |
| 5      | Intra city Trips                                          | 4.15              | 5.62 | 7.61 | 10.13 |
| 6      | Inter city Trips                                          | 0.40              | 0.49 | 0.70 | 0.86  |
| 7      | Modal split (Public<br>Transport for Intra<br>city trips) | 28                | 60   | 70   | 75    |
| 8      | Peak Hour Factor                                          | 10                | 10   | 10   | 10    |
| 9      | Peak Direction Factor                                     | 60                | 60   | 60   | 60    |

#### 2.7 ROAD ONLY NETWORK


- 2.7.1 The road only network consists of all the roads with Right Of Way 12 m (carriageway with 2 lane) and above and covers the whole area of AMC, AUDA and Gandhi Nagar.
- 2.7.2 The origin destination matrix for the year 2003, 2010, 2025 and 2035 assigned on road only network and shown in **Figures 2.5 to 2.8.**
- 2.7.3 The trip assignment on this network in the year 2035 shows that the following road corridors will carry out the maximum traffic more than 20000 peak hour trips. Some of these major corridors are;

- i) Vishala to Sachivalya via Vasna, Paldi, ITO, Usmanpura, Sabarmati, Moetra, Koba Circle.
- ii) Kalupur-Prem Darwaja—Shahpur Darwaja-ITO-HL Commerce College-Manav Mandir-Thaltej Village Road
- iii) 132' Ring Road From Vasna (APMC)- Jivraj Park Shivranjani Junction Memnagar Manav Mandir Naranpura Nava Wadaj RTO.
- iv) National Highway 8 from Vishala Narol Isanpur Khokara Mahamdabad- Rakhail Sahijpur Bogha.
- v) Kalupur Asarva Sahijpur Bogha Naroda GIDC Naroda.
- vi) Sarkhej Gandhinagar Highway (NH 8C) from Sarkhej Makarba-Vejalpur Bodakdev Thaltej Sola Oganj Khodiyar Adalaj Indroda Circle.
- vii) Kalupur Sarangpur Jamalpur Ellis Bridge Ashram Road
- viii) On Baroda Highway from Jamalpur Kankaria Danilimda Narol Vatva Jetalpur Bareja.
- ix) Nadiad Highway from Khokara Mahamdabad Mani Nagar Vatva GIDC Vinzol Hatijan Nandej / Barejadi Raska Mehmdabad









#### 2.8 AIRPORT LINK

The airport rail link from regional rail system (and also through metro) is not justified even in the year 2035 as the daily traffic demand is too low. The current traffic demand and the projection in various years with 10% growth rate are indicated in **Table 2.20**. The shift of airport bound passengers to rail system is high in case of checking in facility in the city with direct link to airport (without any interchange).

| Year | No. of Air<br>Passengers |
|------|--------------------------|
| 2003 | 2500                     |
| 2010 | 4871                     |
| 2025 | 20350                    |
| 2035 | 52784                    |

**Table 2.20 Projected Air Passengers Traffic** 

#### 2.9 IDENTIFICATION OF METRO AND REGIONAL RAIL CORRIDORS

The major transport corridors for the Metro and Regional rail system have been identified on the basis of road network assignment for the year 2035, the mass transport corridors suggested in the earlier studies carried out in the study area and review of the following corridors which are given to be examined in the scope of work.

# A) Metro System

- i) Line No. 1 Vasna Sabarmati Gandhinagar
- ii) Line No. 2 Kalupur Thaltej / Vastrapur
- iii) Line No. 3 Extension of Metro Corridor from Vasna to Changodar
- iv) Line No. 4 Sarkhej to Gandhinagar via NH 8C
- v) Line No. 5 Vasna to Sabarmati along 132 feet wide road
- vi) Line No. 6 Corridor along Sabarmati Riverfront

#### B) Regional Rail System

- i) Corridor No. 1 Barejadi Kalupur Sabarmati Kalol
- ii) Corridor No. 2 Kalupur Naroda
- iii) Corridor No. 3 Airport Link from Kalupur Naroda Line
- iv) Corridor No. 4 Development of Regional Rail system on the available ROW of Indian Railways from Vasna to Sabarmati.
- v) Corridor No. 5 Sarkhej to Gandhinagar via NH 8C

The following Metro and Regional Rail System Corridors were identified for the year 2035, which is considered as Full System.

## A) Metro System

- 1 Chandgodar Sarkhej Makatpur -Vishala-Vasana –ITO Sabarmati –Motera- Indroda Akshardham
- 2 Kalupur Prem Darwaja ITO Manav Mandir Drive in Cinema Thaltej
- 3 Vishala Manav Mandir- Naranpur RTO
- 4 Sarkhej ISKON Temple Thaltej Khodiyar Indroda Circle

## B) Regional Rail System

- 1 Barajadi- Vatva Maninagar Kalupur Khodiyar Kalol.
- 2 Kalupur Naroda.

Where as Regional Rail System corridors as suggested in the Full System are recommended for Phase - 1 on techno-economic considerations, the ridership in the year 2010 does not justify Full system of Metro corridors. Therefore the Phase - 1 of Metro Corridor has been considered where the ridership is maximum. The corridors for Metro and Regional Rail system for Phase - 1 are as follows:

# A) Metro System

- 1 APMC Vasana Aayakar Bhavan Sabarmati Motera Indroda Akshardham
- 2 Ahmedabad Prem Darwaja Aayakar Bhavan Manav Mandir Drive in Cinema Thaltej

# B) Regional Rail System

- 1 Barajadi- Vatva Maninagar Kalupur Khodiyar Kalol Junction.
- 2 Ahmedabad Naroda.

The four different alternatives for North – South Corridor comprise different options and have been presented in Figures 2.9 to 2.12. The summary of Transport Demand for the years 2010, 2025 & 2035 for the four alternatives is presented in Tables 2.21 to 2.23.

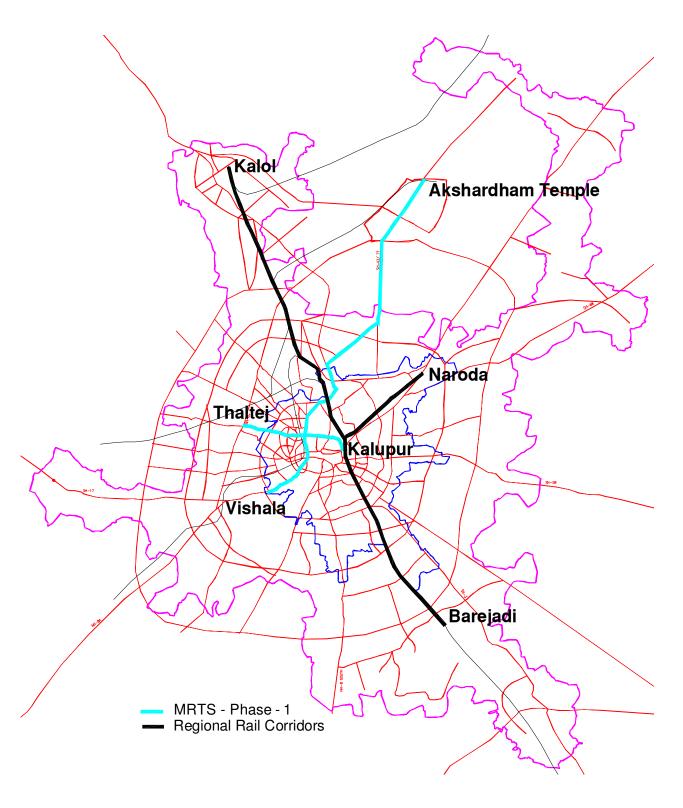



Figure 2.9 Alternative – 1 for North – South Metro Corridor

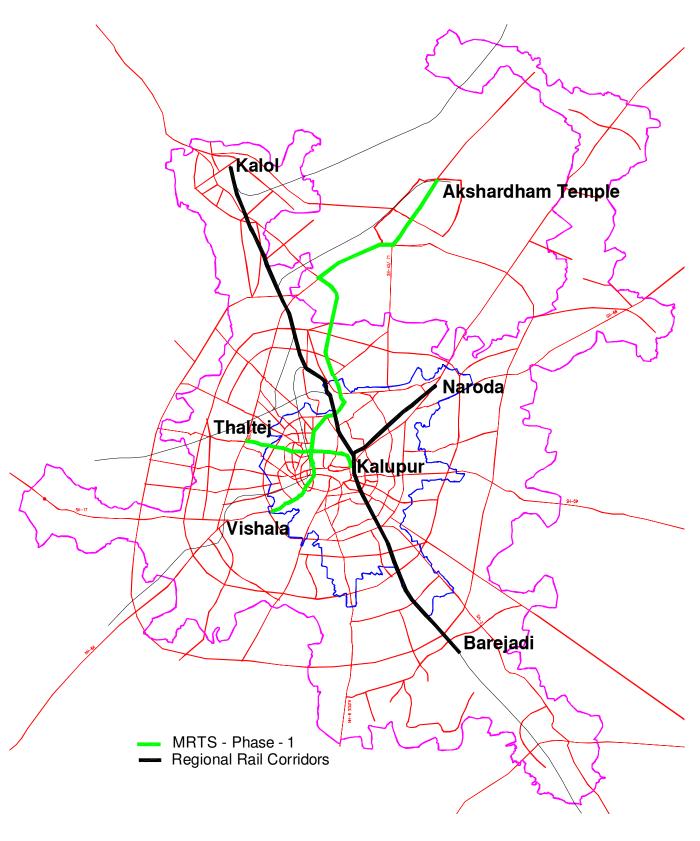



Figure 2.10 Alternative – 2 for North – South Metro Corridor

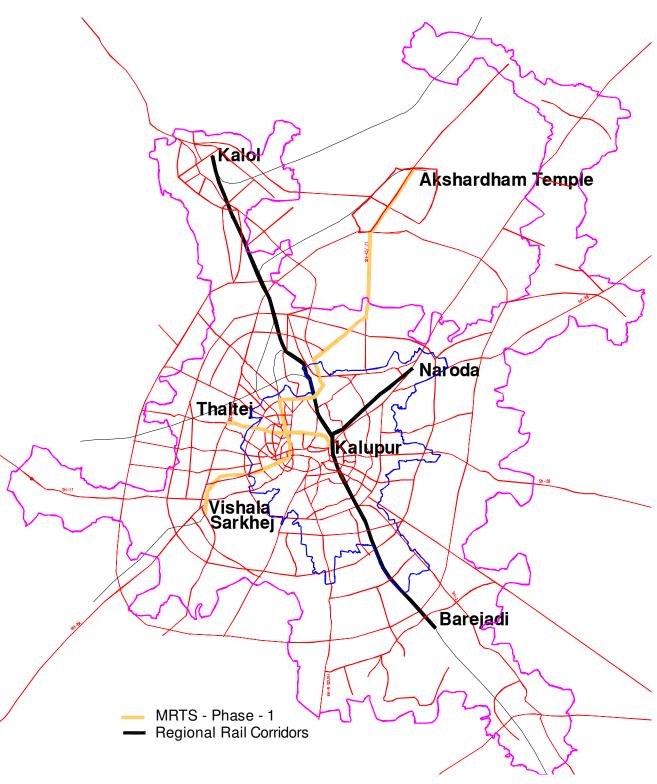



Figure 2.11 Alternative – 3 for North – South Metro Corridor

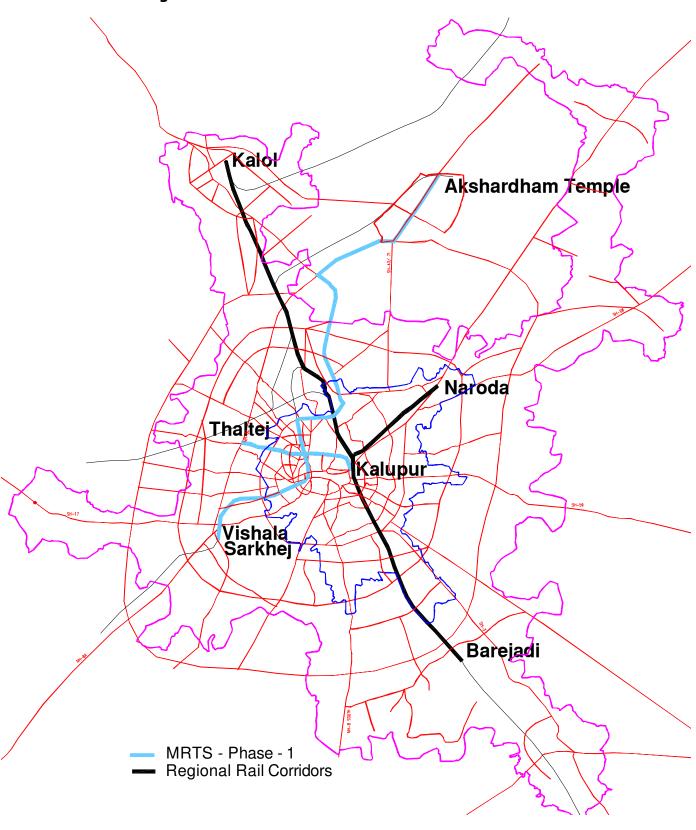



Figure 2.12 Alternative – 4 for North – South Metro Corridor

- Alternative 1: (As given above) Via Koba Circle
   Vishala Akshardham Temple (Ashram Road SP Stadium Motera Koba Circle Indroda Circle)
- Alternative 2: Via Adalaj
   Vishala Akshardham Temple (Ashram Road SP Stadium Adalaj Indroda Circle)
- Alternative 3: Along Meter Gauge Railway line & via Koba Circle Sarkhej – Akshardham Temple (Via Meter Gauge - SP Stadium – Motera - Koba Circle - Indroda Circle)
- 4) Alternative 4: Along Meter Gauge Railway line & via Adalaj
   Sarkhej Akshardham Temple (Via Meter Gauge SP Stadium Adalaj Indroda Circle)

Table 2.21 SUMMARY OF TRANSPORT DEMAND – 2010

| Section         | Length<br>(Km) | Number of<br>Passengers<br>(lakh) | Pass-<br>Km<br>(lakh) | Pass-<br>Km/Km<br>(lakh) | Average<br>Lead<br>(km.) |
|-----------------|----------------|-----------------------------------|-----------------------|--------------------------|--------------------------|
| Alternative I   | 94.67          | 11.30                             | 105.01                | 1.11                     | 9.29                     |
| Alternative II  | 100.26         | 10.40                             | 101.59                | 1.01                     | 9.77                     |
| Alternative III | 104.18         | 11.24                             | 115.28                | 1.11                     | 10.26                    |
| Alternative IV  | 105.63         | 10.58                             | 110.54                | 1.05                     | 10.45                    |

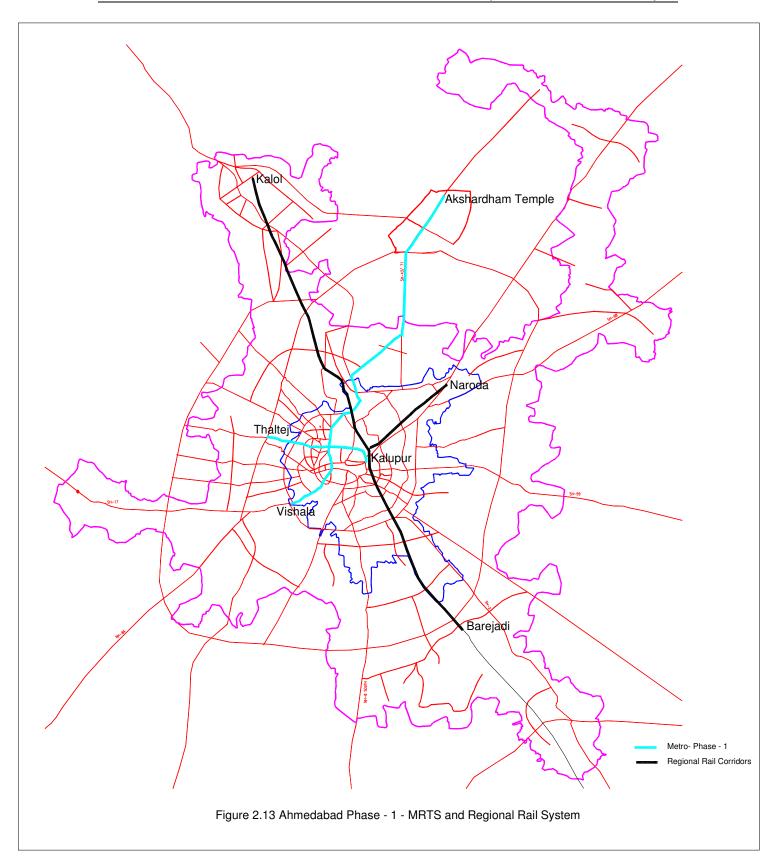
Table 2.22 SUMMARY OF TRANSPORT DEMAND - 2025

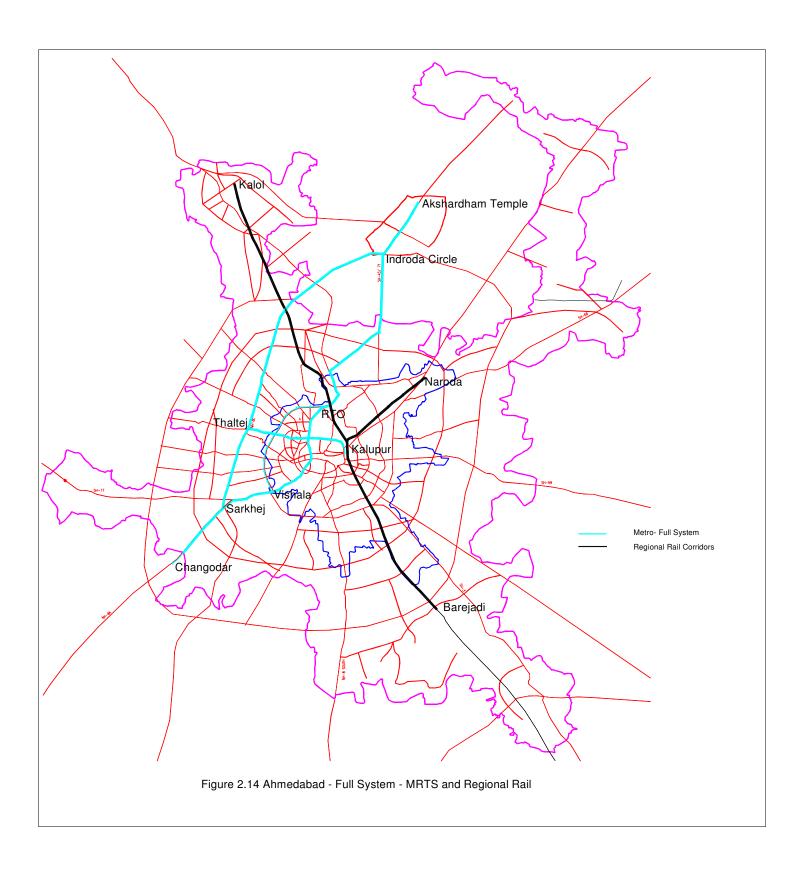
| Section         | Length<br>(Km) | Number of<br>Passengers<br>(lakh) | Pass-<br>Km<br>(lakh) | Pass-<br>Km/Km<br>(lakh) | Average<br>Lead<br>(km.) |
|-----------------|----------------|-----------------------------------|-----------------------|--------------------------|--------------------------|
| Alternative I   | 94.67          | 17.94                             | 176.32                | 1.86                     | 9.83                     |
| Alternative II  | 100.26         | 16.59                             | 170.16                | 1.70                     | 10.26                    |
| Alternative III | 104.18         | 18.27                             | 196.13                | 1.88                     | 10.73                    |
| Alternative IV  | 105.63         | 17.11                             | 188.85                | 1.79                     | 11.04                    |

Table 2.23 SUMMARY OF TRANSPORT DEMAND - 2035

| Section         | Length<br>(Km) | Number of<br>Passengers<br>(lakh) | Pass-<br>Km<br>(lakh) | Pass-<br>Km/Km.<br>(lakh) | Average<br>Lead<br>(km.) |
|-----------------|----------------|-----------------------------------|-----------------------|---------------------------|--------------------------|
| Alternative I   | 94.67          | 25.90                             | 263.77                | 2.79                      | 10.18                    |
| Alternative II  | 100.26         | 24.34                             | 254.32                | 2.54                      | 10.45                    |
| Alternative III | 104.18         | 27.16                             | 295.80                | 2.84                      | 10.89                    |
| Alternative IV  | 105.63         | 25.30                             | 285.11                | 2.70                      | 11.27                    |

It can be observed from the above tables that the passenger traffic is more or less same for all the alternatives. The parameter "Passenger Kms per route Km" are however higher for alternatives I & III as compared to alternatives II & IV. Thus, it is recommended to provide Mass Transit Corridor along Sabarmati – Koba Circle – Indroda Circle – Gandhinagar. This will be a shorter route to connect the twin cities of Gandhinagr and Ahmedabad.


However out of the alternatives I and III the alternative I has been selected on the basis of engineering feasibility and cost of the project.


The network options considered are: Metro for Phase1 and Full system are shown in Figure 2.13 & 2.14.

The phase 1 metro corridors are also worked out with two scenarios

Scenario 1: Metro corridors will be available without dedicated Regional Rail corridors. The Regional Rail system will be available as present without augmentation.

Scenario 2: Metro corridors will be available with dedicated Regional Rail corridors.





The transport demand for the two different scenarios has been worked out and summarized in the **Tables 2.24** to **2.26**. It has been observed from the tables that the no. of passengers, passenger km. and pkm/km are much more in Scenario 2 as compared to Scenario 1. This shows that the Regional Rail System is also required to make the metro system more efficient.

Table 2.24 SUMMARY OF TRANSPORT DEMAND - 2010

| Section    | Length<br>(Km) | Number of<br>Passenger<br>s (lakh) | Pass-<br>Km<br>(lakh) | Pass-<br>Km/Km<br>. (lakh) | Averag<br>e Lead<br>(km.) |
|------------|----------------|------------------------------------|-----------------------|----------------------------|---------------------------|
| Scenario 1 | 41.71          | 5.38                               | 48.23                 | 1.16                       | 8.97                      |
| Scenario 2 | 41.71          | 6.75                               | 56.35                 | 1.35                       | 8.35                      |

Table 2.25 SUMMARY OF TRANSPORT DEMAND - 2025

| Section    | Length<br>(Km) | Number of<br>Passenger<br>s (lakh) | Pass-<br>Km<br>(lakh) | Pass-<br>Km/Km<br>. (lakh) | Averag<br>e Lead<br>(km.) |
|------------|----------------|------------------------------------|-----------------------|----------------------------|---------------------------|
| Scenario 1 | 41.71          | 9.24                               | 87.44                 | 1.87                       | 9.46                      |
| Scenario 2 | 41.71          | 11.34                              | 100.83                | 2.42                       | 8.89                      |

Table 2.26 SUMMARY OF TRANSPORT DEMAND – 2035

| Section    | Length<br>(Km) | Number of<br>Passenger<br>s (lakh) | Pass-<br>Km<br>(lakh) | Pass-<br>Km/Km.<br>(lakh) | Averag<br>e Lead<br>(km.) |
|------------|----------------|------------------------------------|-----------------------|---------------------------|---------------------------|
| Scenario 1 | 41.71          | 14.46                              | 140.20                | 3.36                      | 9.70                      |
| Scenario 2 | 41.71          | 17.10                              | 158.28                | 3.79                      | 9.26                      |

## 2.10 SECTION LOADS

The trips made between two adjacent stations have been worked out for the year 2010, 2025 and 2035 for Phase 1 of Metro with Regional Rail System. The daily and PHPDT passenger trips in Metro and Regional Rail System are given in **Table 2.27 & 2.28**.

TABLE 2.27
SECTION LOADS ON METRO SYSTEM – PHASE - 1

| S.NO.       | FROM            | ТО              | 20:    | LO    | 20     | 25    | 20     | 35    |
|-------------|-----------------|-----------------|--------|-------|--------|-------|--------|-------|
|             |                 |                 | DAILY  | PHPDT | DAILY  | PHPDT | DAILY  | PHPDT |
| <b>APMC</b> | - AKSHARDHAM    |                 |        |       |        |       |        |       |
| 1           | APMC            | VASNA           | 19330  | 1160  | 38868  | 2332  | 63740  | 3824  |
| 2           | VASNA           | NARAYAN NAGAR   | 45574  | 2734  | 70802  | 4248  | 99353  | 5961  |
| 3           | NARAYAN NAGAR   | PALDI           | 64644  | 3879  | 95256  | 5715  | 128627 | 7718  |
| 4           | PALDI           | MADALPUR        | 85503  | 5130  | 122372 | 7342  | 161422 | 9685  |
| 5           | MADALPUR        | NAVA GANDHIGRAM | 95961  | 5758  | 136351 | 8181  | 178618 | 10717 |
| 6           | NAVA GANDHIGRAM | NAVRANGPURA     | 120610 | 7237  | 173151 | 10389 | 229319 | 13759 |
| 7           | NAVRANGPURA     | AAYAKAR BHAVAN  | 174256 | 10455 | 242553 | 14553 | 314988 | 18899 |
| 8           | AAYAKAR BHAVAN  | USMANPURA       | 155358 | 9321  | 251829 | 15110 | 369488 | 22169 |
| 9           | USMANPURA       | VADAJ           | 163943 | 9837  | 264483 | 15869 | 385583 | 23135 |
| 10          | VADAJ           | GANDHI ASHRAM   | 157029 | 9422  | 264628 | 15878 | 392633 | 23558 |
| 11          | GANDHI ASHRAM   | SUBASH CIRCLE   | 150830 | 9050  | 258442 | 15507 | 387215 | 23233 |
| 12          | SUBASH CIRCLE   | SABARMATI       | 148842 | 8931  | 259647 | 15579 | 394248 | 23655 |
| 13          | SABARMATI       | SHANKARPURA     | 185482 | 11129 | 343091 | 20585 | 547248 | 32835 |
| 14          | SHANKARPURA     | ACHER           | 189262 | 11356 | 348996 | 20940 | 555195 | 33312 |
| 15          | ACHER           | MOTERA STADIUM  | 174467 | 10468 | 335123 | 20107 | 544336 | 32660 |
| 16          | MOTERA STADIUM  | MOTERA          | 144553 | 8673  | 293856 | 17631 | 494533 | 29672 |
| 17          | MOTERA          | AMIYAPUR        | 108877 | 6533  | 230006 | 13800 | 400048 | 24003 |
| 18          | AMIYAPUR        | SUGHAD          | 119986 | 7199  | 258571 | 15514 | 458251 | 27495 |
| 19          | SUGHAD          | NARMADA CANAL   | 111001 | 6660  | 242676 | 14561 | 434748 | 26085 |
| 20          | NARMADA CANAL   | KOBA CIRCLE     | 108997 | 6540  | 236327 | 14180 | 424329 | 25460 |
| 21          | KOBA CIRCLE     | KOBA            | 132405 | 7944  | 279041 | 16742 | 492231 | 29534 |
| 22          | KOBA            | POR             | 124681 | 7481  | 259471 | 15568 | 456783 | 27407 |
| 23          | POR             | KUDASAN         | 118110 | 7087  | 234078 | 14045 | 391026 | 23462 |
| 24          | KUDASAN         | DHAULA KUVA     | 123870 | 7432  | 255185 | 15311 | 443986 | 26639 |

| S.NO. | FROM                      | TO                      | 201    | LO    | 20     | 25    | 2035   |       |
|-------|---------------------------|-------------------------|--------|-------|--------|-------|--------|-------|
|       |                           |                         | DAILY  | PHPDT | DAILY  | PHPDT | DAILY  | PHPDT |
| 25    | DHAULA KUVA               | INFOCITY                | 119792 | 7188  | 235488 | 14129 | 368559 | 22114 |
| 26    | INFOCITY                  | INDRODA CIRCLE          | 123662 | 7420  | 247738 | 14864 | 393739 | 23624 |
| 27    | INDRODA CIRCLE            | SECTOR7                 | 127751 | 7665  | 263251 | 15795 | 462216 | 27733 |
| 28    | SECTOR7                   | S.T.DEPOT               | 137102 | 8226  | 284125 | 17048 | 490127 | 29408 |
| 29    | S.T.DEPOT                 | SACHIVALAY              | 135009 | 8101  | 282386 | 16943 | 484722 | 29083 |
| 30    | SACHIVALAY                | AKSHARDHAM              | 73644  | 4419  | 152652 | 9159  | 251348 | 15081 |
| AHME  | DABAD JUNCTION -          | THALTEJ                 |        | _     |        |       |        |       |
| 1     | AHMEDABAD JN.             | PREM DARWAJA            | 231632 | 13898 | 314980 | 18899 | 402658 | 24159 |
| 2     | PREM DARWAJA              | DELHI DARWAJA           | 237139 | 14228 | 325656 | 19539 | 419955 | 25197 |
| 3     | DELHI DARWAJA             | SHAHPUR DARWAJA         | 231171 | 13870 | 319102 | 19146 | 413722 | 24823 |
| 4     | SHAHPUR DARWAJA           | AAYAKAR BHAVAN          | 226617 | 13597 | 318208 | 19092 | 418833 | 25130 |
| 5     | AAYAKAR BHAVAN            | SARDAR PATEL<br>STADIUM | 183461 | 11008 | 299837 | 17990 | 438368 | 26302 |
|       | SARDAR PATEL<br>STADIUM   | COMMERCE CIRCLE         | 179959 | 10798 | 301385 | 18083 | 444473 | 26668 |
| 7     | COMMERCE CIRCLE           | GUJARAT<br>UNIVERSITY   | 169001 | 10140 | 288781 | 17327 | 430901 | 25854 |
| 8     | <b>GUJARAT UNIVERSITY</b> | GURUKUL                 | 143886 | 8633  | 255617 | 15337 | 389864 | 23392 |
| 9     | GURUKUL                   | DOORDARSHAN<br>KENDRA   | 91560  | 5494  | 182633 | 10958 | 307081 | 18425 |
| 10    | DOORDARSHAN<br>KENDRA     | THALTEJ                 | 79230  | 4754  | 153471 | 9208  | 251846 | 15111 |

TABLE 2.28
SECTION LOADS ON REGIONAL RAIL SYSTEM – PHASE - 1

| S.NO. | FROM                  | TO                   | 201       | LO        | 20        | 2025  |        | 35    |
|-------|-----------------------|----------------------|-----------|-----------|-----------|-------|--------|-------|
|       |                       |                      | DAILY     | PHPDT     | DAILY     | PHPDT | DAILY  | PHPDT |
|       | RI                    | EGIONAL RAIL CORRIDO | OR: BARAJ | ADI- KALO | DL JUNCTI | ON    |        |       |
| 1     | BARAJEDI              | BHAIPURA             | 10170     | 610       | 17753     | 1065  | 25446  | 1527  |
| 2     | BHAIPURA              | GERATPUR             | 21408     | 1284      | 37200     | 2232  | 54799  | 3288  |
| 3     | GERATPUR              | VIVEKANAND NAGAR     | 26958     | 1617      | 45160     | 2710  | 64910  | 3895  |
| 4     | VIVEKANAND NAGAR      | VATVA GIDC           | 25718     | 1543      | 43540     | 2612  | 63060  | 3784  |
| 5     | VATVA GIDC            | VINZOL               | 36609     | 2197      | 62895     | 3774  | 94267  | 5656  |
| 6     | VINZOL                | VATVA                | 67737     | 4064      | 98641     | 5918  | 132415 | 7945  |
| 7     | VATVA                 | JASHODA NAGAR        | 70500     | 4230      | 100970    | 6058  | 134223 | 8053  |
| 8     | JASHODA NAGAR         | DAXINI SOCIETY       | 154816    | 9289      | 215027    | 12902 | 278689 | 16721 |
| 9     | DAXINI SOCIETY        | MANINAGAR            | 169222    | 10153     | 235521    | 14131 | 305439 | 18326 |
| 10    | MANINAGAR             | KANKARIA             | 174851    | 10491     | 243790    | 14627 | 316329 | 18980 |
| 11    |                       | AHMEDABAD            |           |           |           |       |        |       |
|       | KANKARIA              | JUNCTION             | 201212    | 12073     | 284077    | 17045 | 373263 | 22396 |
| 12    | AHMEDABAD<br>JUNCTION | SARASPUR             | 134912    | 8095      | 212475    | 12749 | 297421 | 17845 |
| 13    | SARASPUR              | GIRDHARNAGAR         | 139174    | 8350      | 219770    | 13186 | 308330 | 18500 |
| 14    | GIRDHARNAGAR          | SHAHIBAUG            | 141656    | 8499      | 225141    | 13508 | 316656 | 18999 |
| 15    | SHAHIBAUG             | NATIONAL MEMORIAL    | 137330    | 8240      | 222387    | 13343 | 316302 | 18978 |
| 16    | NATIONAL MEMORIAL     | POWER HOUSE          | 132532    | 7952      | 216474    | 12988 | 309720 | 18583 |
| 17    | POWER HOUSE           | SABARMATI            | 110827    | 6650      | 196877    | 11813 | 299968 | 17998 |
| 18    | SABARMATI             | RANIP                | 72492     | 4350      | 137747    | 8265  | 217311 | 13039 |
| 19    | RANIP                 | KALI ROAD            | 75478     | 4529      | 139283    | 8357  | 216101 | 12966 |
| 20    | KALI ROAD             | D CABIN              | 84088     | 5045      | 159713    | 9583  | 250217 | 15013 |
| 21    | D CABIN               | CHANDKHEDA ROAD      | 57322     | 3439      | 107917    | 6475  | 168105 | 10086 |
| 22    | CHANDKHEDA ROAD       | TRAGAD               | 52501     | 3150      | 98490     | 5909  | 154287 | 9257  |
| 23    | TRAGAD                | KHORAJ               | 51288     | 3077      | 95382     | 5723  | 147473 | 8848  |

| S.NO. | FROM             | ТО               | 2010     |              | 20     | 25    | 2035   |       |
|-------|------------------|------------------|----------|--------------|--------|-------|--------|-------|
|       |                  |                  | DAILY    | <b>PHPDT</b> | DAILY  | PHPDT | DAILY  | PHPDT |
| 24    | KHORAJ           | KHODIYAR         | 60254    | 3615         | 114599 | 6876  | 179370 | 10762 |
| 25    | KHODIYAR         | DANTALI          | 59569    | 3574         | 113593 | 6816  | 178170 | 10690 |
| 26    | DANTALI          | DHANEJ           | 58088    | 3485         | 108225 | 6494  | 162508 | 9750  |
| 27    | DHANEJ           | SAIJ SERTHA ROAD | 58512    | 3511         | 110753 | 6645  | 171783 | 10307 |
| 28    | SAIJ SERTHA ROAD | SAIJ VILLAGE     | 58712    | 3523         | 110697 | 6642  | 171466 | 10288 |
| 29    | SAIJ VILLAGE     | GIDC KALOL       | 56506    | 3390         | 106856 | 6411  | 165715 | 9943  |
| 30    | GIDC KALOL       | KALOL JUNCTION   | 56135    | 3368         | 106713 | 6403  | 164822 | 9889  |
|       |                  | AHMEDABAD        | JUNCTION | - NAROD      | PΑ     |       |        |       |
| 1     | AHMEDABAD JN.    | SARASPUR         | 210746   | 12645        | 285381 | 17123 | 362356 | 21741 |
| 2     | SARASPUR         | ASARVA           | 224158   | 13449        | 303218 | 18193 | 384204 | 23052 |
| 3     | ASARVA           | CHAMANPURA       | 216059   | 12964        | 291485 | 17489 | 367609 | 22057 |
| 4     | CHAMANPURA       | MEGHANI NAGAR    | 150324   | 9019         | 197319 | 11839 | 242965 | 14578 |
| 5     | MEGHANI NAGAR    | SAHIJPUR         | 133813   | 8029         | 175539 | 10532 | 216659 | 13000 |
| 6     | SAIJPUR          | SARDAR GRAM      | 90457    | 5427         | 116768 | 7006  | 142252 | 8535  |
| 7     | SARDAR GRAM      | KUBER NAGAR      | 63912    | 3835         | 80842  | 4851  | 95893  | 5754  |
| 8     | KUBER NAGAR      | NARODA           | 49642    | 2979         | 62167  | 3730  | 73094  | 4386  |

## 2.11 Corridor Loading

- 2.11.1 The description of no of passengers using the Phase 1 system as follows
  - A) Metro Phase 1: The phase 1 of Metro system comprises of the following two lines

Line - 1: APMC-Vasana —Aayakar Bhavan —Sabarmati —Motera-Indroda — Akshardham along Ashram road of length of about 32 km. Consisting of 31 stations with interstation distance of 1 km. The number of passengers carried by this line is 4.16 lakh, 7.40 lakh and 11.95 lakhs in the years 2010, 2025 and 2035 respectively.

Line - 2: Ahmedabad Junction – Prem Darwaja – Aayakar Bhavan – Manav Mandir – Drive in Cinema – Thaltej of length 9.65 km. consisting of 11 stations. The number of passengers carried by this line is 2.59 lakh, 3.94 lakh and 5.15 lakhs in the years 2010, 2025 and 2035 respectively.

B) Regional Rail System Phase – 1:

Line - 1: Barajadi- Vatva – Maninagar – Kalupur –Kodiyar – Kalol of length about 44km. The number of passengers carried by this line Phase-1 is 2.80 lakh, 4.30 lakh and 5.97 lakhs in the years 2010, 2025 and 2035 respectively.

Line - 2: Ahmedabad Junction – Naroda via Asarva and Sardargram of length 9.47 km. The number of passengers carried by this line in Phase - 1 is 1.75 lakh, 2.30 lakh and 2.83 lakhs in the years 2010, 2025 and 2035 respectively.

The expected station loads on the metro corridor and regional rail System for phase I for different horizons years is presented in **Table 2.29**.

TABLE 2.29 STATIONS LOADING ON PHASE - I

| SI.No.            | STATION NAME    | Daily BO | ARDING / AL | IGHTING |
|-------------------|-----------------|----------|-------------|---------|
| SI.NO.            | STATION NAME    | 2010     | 2025        | 2035    |
| APMC – AKSHARDHAM |                 |          |             |         |
| 1                 | APMC            | 9700     | 19400       | 31900   |
| 2                 | VASNA           | 14800    | 21500       | 26200   |
| 3                 | NARAYAN NAGAR   | 11800    | 15500       | 18700   |
| 4                 | PALDI           | 13700    | 18100       | 22100   |
| 5                 | MADALPUR        | 7600     | 9900        | 14000   |
| 6                 | NAVA GANDHIGRAM | 15500    | 22100       | 33400   |
| 7                 | NAVRANGPURA     | 30200    | 40200       | 60000   |
| 8                 | AAYAKAR BHAVAN  | 12500    | 18000       | 30000   |
| 9                 | USMANPURA       | 4000     | 5900        | 10500   |
| 10                | VADAJ           | 23900    | 30000       | 45000   |

| SI.No.   | STATION NAME                  | Daily BO | ARDING / ALI | GHTING  |
|----------|-------------------------------|----------|--------------|---------|
| 31.140.  | STATION NAME                  | 2010     | 2025         | 2035    |
| 11       | GANDHI ASHRAM                 | 12900    | 17500        | 21500   |
| 12       | SUBASH CIRCLE                 | 11400    | 22400        | 29100   |
| 13       | SABARMATI                     | 8500     | 12700        | 15500   |
| 14       | SHANKARPURA                   | 1800     | 5800         | 9500    |
| 15       | ACHER                         | 16900    | 23200        | 34000   |
| 16       | MOTERA STADIUM                | 25300    | 46100        | 60000   |
| 17       | MOTERA                        | 16600    | 39700        | 38000   |
| 18       | AMIYAPUR                      | 5200     | 16300        | 27100   |
| 19       | SUGHAD                        | 6200     | 15900        | 23000   |
| 20       | NARMADA CANAL                 | 2800     | 13900        | 32700   |
| 21       | KOBA CIRCLE                   | 13600    | 26700        | 44500   |
| 22       | KOBA                          | 3900     | 10400        | 20800   |
| 23       | POR                           | 3100     | 12800        | 30600   |
| 24       | KUDASAN                       | 2700     | 10800        | 24700   |
| 25       | DHAULA KUVA                   | 1900     | 13200        | 40700   |
| 26       | INFOCITY                      | 1800     | 10700        | 21700   |
| 27       | INDRODA CIRCLE                | 4800     | 16000        | 45800   |
| 28       | SECTOR7                       | 32400    | 37400        | 60300   |
| 29       | S.T.DEPOT                     | 13100    | 29100        | 50000   |
| 30       | SACHIVALAY                    | 50600    | 82500        | 148000  |
| 31       | AKSHARDHAM                    | 36800    | 76300        | 125700  |
|          | BAD JUNCTION – THALTEJ        |          |              | <b></b> |
| 1        | AHMEDABAD JUNCTION            | 48800    | 65800        | 83500   |
| 2        | PREM DARWAJA                  | 21500    | 29800        | 32800   |
| 3        | DELHI DARWAJA                 | 18900    | 26000        | 30800   |
| 4        | SHAHPUR DARWAJA               | 27000    | 34800        | 42000   |
| 5        | AAYAKAR BHAVAN                | 19500    | 23300        | 27000   |
| 6        | SARDAR PATEL STADIUM          | 17700    | 36400        | 39000   |
| 7        | COMMERCE CIRCLE               | 8500     | 11100        | 15000   |
| 8        | GUJARAT UNIVERSITY            | 13700    | 18500        | 23700   |
| 9        | GURUKUL<br>DOORDARSHAN KENDRA | 24700    | 31600        | 43200   |
| 10<br>11 |                               | 12900    | 25400        | 34500   |
|          | THALTEJ  DI – KALOL JUNCTION  | 45800    | 91300        | 153500  |
| 1        | BARAJEDI                      | 5100     | 8900         | 12700   |
| 2        | BHAIPURA                      | 5100     | 9000         | 13700   |
| 3        | GERATPUR                      | 2900     | 4200         | 7300    |
| 4        | VIVEKANAND NAGAR              | 1500     | 2700         | 4700    |
| 5        | VATVA GIDC                    | 5900     | 10100        | 21500   |
| 6        | VINZOL                        | 14600    | 19400        | 22500   |
| 7        | VATVA                         | 6900     | 9300         | 13300   |
| 8        | JASHODA NAGAR                 | 26900    | 32300        | 41200   |
| 9        | DAXINI SOCIETY                | 15100    | 20400        | 25300   |
| 10       | MANINAGAR                     | 24400    | 28700        | 34300   |
| 11       | KANKARIA                      | 30000    | 40000        | 47000   |
| 12       | AHMEDABAD JUNCTION            | 20100    | 26300        | 31000   |
| 13       | SARASPUR                      | 6900     | 8200         | 11000   |
| 14       | GIRDHARNAGAR                  | 5000     | 7300         | 9300    |
| 15       | SHAHIBAUG                     | 7600     | 10500        | 13000   |
| 16       | NATIONAL MEMORIAL             | 2100     | 2600         | 5900    |
|          | VIIAE IIIENIVIIIAE            | 2100     | 2000         | 5500    |

| SI.No. | STATION NAME          | Daily BOARDING / ALIGHTING |       |       |  |
|--------|-----------------------|----------------------------|-------|-------|--|
|        |                       | 2010                       | 2025  | 2035  |  |
| 17     | POWER HOUSE           | 3500                       | 5400  | 9300  |  |
| 18     | SABARMATI             | 15700                      | 24200 | 28600 |  |
| 19     | RANIP                 | 4900                       | 8300  | 13800 |  |
| 20     | KALI ROAD             | 6400                       | 12200 | 16500 |  |
| 21     | D CABIN               | 17400                      | 34000 | 38500 |  |
| 22     | CHANDKHEDA ROAD       | 3600                       | 5100  | 10000 |  |
| 23     | TRAGAD                | 3300                       | 6700  | 12000 |  |
| 24     | KHORAJ                | 5500                       | 10800 | 17000 |  |
| 25     | KHODIYAR              | 1800                       | 6200  | 12000 |  |
| 26     | DANTALI               | 1600                       | 3700  | 11000 |  |
| 27     | DHANEJ                | 1200                       | 4000  | 8000  |  |
| 28     | SAIJ SERTHA ROAD      | 2800                       | 6200  | 8500  |  |
| 29     | SAIJ VILLAGE          | 1600                       | 4900  | 7200  |  |
| 30     | GIDC KALOL            | 2500                       | 5000  | 7500  |  |
| 31     | KALOL JUNCTION        | 28100                      | 53400 | 83400 |  |
| AHMEDA | BAD JUNCTION – NARODA |                            |       |       |  |
| 1      | AHMEDABAD JUNCTION    | 15000                      | 21000 | 26000 |  |
| 2      | SARASPUR              | 7500                       | 11000 | 16600 |  |
| 3      | ASARVA                | 16500                      | 23500 | 28500 |  |
| 4      | CHAMANPURA            | 30800                      | 44900 | 54800 |  |
| 5      | MEGHANI NAGAR         | 21700                      | 26700 | 32800 |  |
| 6      | SAIJPUR               | 28500                      | 36100 | 44400 |  |
| 7      | SARDAR GRAM           | 20700                      | 23900 | 29400 |  |
| 8      | KUBER NAGAR           | 9500                       | 11800 | 14000 |  |
| 9      | NARODA                | 24800                      | 31100 | 36500 |  |

## 2.12 Summary of Transport Demand Forecast

The summary of transport demand forecast are presented in **Table 2.30** and **Table 2.31** for the year 2010 & 2035, for the phase 1 Metro and Regional Rail corridors. It is seen that, with a network length of 94.7 km would carry 11.30 lakh & 25.90 lakh passengers per day, the passenger km carried would be 105.02 lakh & 263.77 lakhs and the intensity of utilisation (passenger km carried per km) would be 1.11 lakh & 2.79 lakh for the year 2010 and 2035 respectively.

Table 2.30 SUMMARY OF TRANSPORT DEMAND – 2010-PHASE 1

| Section                                                    | Length<br>(Km) | Number of<br>Passengers<br>(Lakhs) | Pass-<br>Km<br>(lakhs) | Pass-<br>Km/km<br>(lakhs). | Average<br>Lead (km.) |  |  |  |  |
|------------------------------------------------------------|----------------|------------------------------------|------------------------|----------------------------|-----------------------|--|--|--|--|
| A) Metro System                                            |                |                                    |                        |                            |                       |  |  |  |  |
| Line – 1: APMC-AAYAKAR<br>BHAVAN-SABARMATI –<br>AKSHARDHAM | 31.88          | 4.16                               | 39.00                  | 1.22                       |                       |  |  |  |  |
| Line – 2: AHMEDABAD JN<br>AAYAKAR BHAVAN - THALTEJ         | 9.83           | 2.59                               | 17.47                  | 1.78                       |                       |  |  |  |  |
| B) Regional Rail System                                    |                |                                    |                        |                            |                       |  |  |  |  |
| Line – 1: BAREJADI –<br>AHMEDABAD JN. –KALOL JN.           | 43.49          | 2.80                               | 34.39                  | 0.79                       |                       |  |  |  |  |
| Line – 2: AHMEDABAD –<br>NARODA                            | 9.47           | 1.75                               | 14.15                  | 1.49                       |                       |  |  |  |  |
| TOTAL                                                      | 94.67          | 11.30                              | 105.02                 | 1.11                       | 9.29                  |  |  |  |  |

Table 2.31 SUMMARY OF TRANSPORT DEMAND – 2035-PHASE 1

| Section                                                    | Length<br>(Km) | Number of<br>Passengers<br>(lakhs) | Pass-<br>Km<br>(lakhs) | Pass-<br>Km/km<br>(lakhs). | Average<br>Lead(km.) |  |  |  |  |
|------------------------------------------------------------|----------------|------------------------------------|------------------------|----------------------------|----------------------|--|--|--|--|
| A) Metro System                                            |                |                                    |                        |                            |                      |  |  |  |  |
| Line – 1: APMC-AAYAKAR<br>BHAVAN-SABARMATI –<br>AKSHARDHAM | 31.88          | 11.95                              | 119.92                 | 3.76                       |                      |  |  |  |  |
| Line – 2: AHMEDABAD JN<br>AAYAKAR BHAVAN - THALTEJ         | 9.83           | 5.15                               | 38.34                  | 3.90                       |                      |  |  |  |  |
| B) Regional Rail System                                    |                |                                    |                        |                            |                      |  |  |  |  |
| Line – 1: BAREJADI –<br>AHMEDABAD JN. –KALOL JN.           | 43.49          | 5.97                               | 81.99                  | 1.89                       |                      |  |  |  |  |
| Line – 2: AHMEDABAD –<br>NARODA                            | 9.47           | 2.83                               | 23.52                  | 2.48                       |                      |  |  |  |  |
| TOTAL                                                      | 94.67          | 25.90                              | 263.77                 | 2.79                       | 10.18                |  |  |  |  |